Faktorenanalyse
Die Faktoranalyse behandelt multivariate beobachtete Variablen die zumeist von gleichen oder ähnlichen unterliegenden Variablen beeinflusst werden. Ähnlich wie die zu analysierenden Variablen sind auch die zugrundeliegenden Faktoren unterschiedlich für jedes beobachtete Individuum. Allerdings sind die zugrundeliegenden Faktoren unbeobachtbar. Jeder Faktor der verwendet wird erklärt einen Teil der Varianz in den beobachteten Variablen und wird danach geordnet, wie hoch der Anteil der erklärten Varianz von den einzelnen Faktoren ist. Das Ziel der Faktoranalyse ist die Dimensionsreduktion der analysierten Variablen. In der Arbeit sollen vor allem auf die Motivation für Faktormodelle, die Modelldefinition und Annahmen sowie Möglichkeiten der Parameterschätzung eingegangen werden.
Einstiegsliteratur:
- A.C. Rencher und W.F. Christensen. Methods of Multivariate Analysis. John Wiley & Sons, Inc., 2012 (Chap. 13)
- J.F. Hair u. a. Multivariate Data Analysis. Pearson Education Limited, 2014 (Chap. 3)
Clusteranalyse
Die Clusteranalyse wird dazu verwendet um Daten, aus meist multivariaten Beobachtungen, anhand ähnlicher (Verhaltens-)Strukturen in sogenannte Cluster oder Gruppen zu ordnen. Das Ziel ist es optimale Gruppen für die Beobachtungen zu finden, sodass in jeder einzelnen Gruppe nur die Beobachtungen zusammengefasst werden, die eine ähnliche Struktur aufweisen, während die einzelnen Gruppen untereinander keine Ähnlichkeiten aufweisen. Um eine Gruppierung zu ermöglichen, gibt es verschiedene Algorithmen. Die einen betrachten alle Beobachtungspaare die auf Ähnlichkeit basieren. Dabei verwendet die Ähnlichkeitsanalyse eine sogenannte ”Measure of Distance”. Andere Algorithmen verwenden eine vorher festgelegte Clustermitte oder vergleichen die Variabilität der einzelnen Cluster mit- und untereinander. Das Anwendungsgebiet der Clusteranalyse ist vielfältig wie zum Beispiel Medizin, Soziologie, Kriminologie, Anthropologie, Archäologie, Geographie, Marktanalysen, Wirtschaftswissenschaften und Ingenieurwesen.
Einstiegsliteratur:
- A.C. Rencher und W.F. Christensen. Methods of Multivariate Analysis. John Wiley & Sons, Inc., 2012 (Chap. 15)
- J.F. Hair u. a. Multivariate Data Analysis. Pearson Education Limited, 2014 (Chap. 8)