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Abstract

This paper identifies and estimates the relevant cycles in paleoclimate data of earth temper-
ature, ice volume and CO2. Cyclical cointegration analysis is used to connect these cycles
to the earth eccentricity and obliquity and to see that the earth surface temperature and ice
volume are closely connected. These findings are used to build a forecasting model including
the cyclical component as well as the relevant earth and climate variables which outperforms
models ignoring the cyclical behaviour of the data. Especially the turning points can be
predicted accurately using the proposed approach. Out of sample forecasts for the turning
points of earth temperature, ice volume and CO2 are derived.

Keywords:Paleoclimate Cycles · Cyclical Fractional Cointegration · Forecasting Climate Data .

1 Introduction

Anthropogenic climate change is now a days one of the most important global issues on Earth. Compared
to the end of the 19th century, the global surface temperature for the end of the 21st century is very
likely to rise by 3.3 to 5.7 ◦C under the worst-case scenario, ”very high greenhouse gas emissions scenario”
(Intergovernmental Panel on Climate Change, 2021). This scenario implies dramatic consequences on
nature and wildlife in terrestrial, wetland, and ocean ecosystems, and on humanity with respect to food
and water security, migration, health, higher risk of conflict worldwide, reduction of global economic
production, and a possible collapse of the current societal organization.

Climate change is due to exogenous orbital variables during the history of Earth, and partly due to the
influence of humanity during the most recent 10,000 to 15,000 years. First, during the 4.5-billion-year
history of Earth, climate change was driven by orbital variables which influenced global ice volume,
atmospheric carbon dioxide (CO2) level, and land surface temperature. The atmospheric CO2 level and
land surface temperature are related to melting glaciers and sea ice.

The main three orbital variables which drive Earth’s climate (see figures 2) are: (i) changes in the non-
circularity of Earth’s orbit with a period of 100,000 years, (ii) changes in the tilt of Earth’s rotational
axis relative to the ecliptic with a period of 41,000 years, and (iii) circular rotation of the rotational
axis itself, which changes the season at which Earth’s orbit is nearest to the Sun, with a period that is
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between 19,000 to 23,000 years. The cycles of those variables (i.e., the Milankovitch cycles) are the most
important orbital variables which influence Earth’s climate.

The analysis of the time series behaviour of paleoclimate data has attracted much attention in the recent
years. Paleoclimate data is data gathered from cores drilled in the Antarctic ice cap measuring the
concentration of carbon dioxid and methan as well as the amount of deuterium in the ice as a proxy for
ocean temperature and the volume of ice back for about 800.000 years BP. Paillard (2001) connects these
values to the Milankovitch orbital cycles on the intensity of solar radiation reaching the earth in different
periods. Sources of variation are the eccentricity of the Earth’s orbit, the obliquity of the Earth’s axis
of rotation with respect to the orbital plane and the precession of the rotational axis. Hays et al. (1976)
and later reviewed by Maslin (2016) find that major climate changes are due to variations in obliquity
and precession.

The connection among theses variables has been intensively investigated. Fischer et al. (1999) found
that increases in CO2 lagged temperature by 600± 400 years. Mudelsee (2001) uses parabolic regression
analysis to determine phase relations. Kaufmann and Juselius (2013) and Miller (2019) use cointegration
modeling whereas Mac Millan and Wohar (2019) apply regression techniques for temperature and CO2.
Davidson et al. (2015) provide an extensive time series modeling excercise for this data looking also for
Granger causalities.

In terms of forecasting climate variables, recent econometric techniques include Machine Learning as in
Reikard (2021), VAR(p) models with exogenous orbital variables as in Castle and Hendry (2020) and
multivariate score-driven models with exogenous orbital variables as in Blazsek and Escribano (2022) and
Blazsek and Escribano (2023). Since the influence of humanity on Earth’s climate started approximately
10,000 to 15,000 years ago, by commencing agricultural activities such as cultivating plants and livestock
(Ruddiman (2005)), Castle and Hendry (2020) and Blazsek and Escribano (2022) show that the climate
forecasts since 12.000 years ago depart from the observed climate values (higher temperature, higher CO2

and lower global ice-volume) and this is partly due to anthropogenic reasons.

Blazsek and Escribano (2023) introduce new regime-switching score-driven ice-age models to capture the
abrupt changes observed when climate variables exceed certain threshold values. They consider a score-
driven Markov-switching ice-age model and provided empirical evidence of having structural changes
in three climate variables. In particular, they found clear asymmetric cyclical reactions during low-
persistence periods of rapid increases in CO2 and temperature versus the other regime of high persistence
periods with decreasing values of CO2 and temperature. Furthermore, they identify alternative regime
switching periods by using a temporal Ward’s clustering method (score-driven threshold ice-age models).
Optimal clustering suggests to have different clusters for each of the three climate variables. Without
taken into consideration the extreme climate effects of the most recent 250 years of fossil fuels burned
by humanity, they suggest that for the next 5,000 years there must exist some synchronous turning
points between the long-run cyclical evolution of the three climate variables, moving to a new period of
increasing global ice volume, decreasing atmospheric CO2 volume, and decreasing Antarctic land surface
temperature in the next 5000 years. Therefore, some of the main purposes of this paper is to study the
cyclical behavior of those climate variables, evaluate the possible synchronicity of the turning points and
study the existence of cointegration at cyclical frequencies, between the climate variables considered and
possibly with some of the three orbital variables.

Although it is generally accepted that eccentricity, obliquity and precession are highly cyclical variables
driving carbon dioxid as well as temperature and ice volume and thus introducing also strong cycles
into these time series the modeling has focused mainly on the properties of the zero frequency of the
respective periodogram and therefore ignoring the cyclical behaviour of the data. In fact, we will show
that the dominant frequency in those Paleoclimate variables is not the zero frequency, as is common
in most economic variables, see Granger (1966), but other cyclical frequencies. As the cycles in these
variables are strongly varying we believe it is justified to model them as being stochastic. Therefore, we
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investigate how many different cycles are present in the respective variables and identify dominant cycles
for all variables. We model the time series behaviour and especially the persistence of cycles. Another
though different approach of modelling the cyclical behaviour of the paleoclimate variables can be found
in Proietti and Maddanu (2024).

The paper is organized as follows. In section 2 we describe the data in more detail before introducing
our methodology and applying it to the paleoclimate data in section 3. Section 4 contains results on
cyclical cointegration between the paleoclimate variables and the explanatory variables, section 6 uses
these results to build a forecasting model for the paleoclimate variables and section 7 concludes.

2 Paleoclimate Data and their Properties

Part of the data in this paper are obtained from Jennifer L. Castle and David F. Hendry (Castle and
Hendry (2020)). We will provide a description of the dependent and explanatory orbital variables. The
dependent variables are global ice volume (Icet), atmospheric carbon dioxide (CO2,t) and Antarctic
land surface temperature (Tempt) which are observed from 798,000 years ago to 1000 years ago, with a
1,000-year observation frequency.

These variables are displayed in figure 1. The data looks in all cases highly cyclical and with a possibly
common cycle.

The autocorrelation functions decline faster than the corresponding decline of variables that are non-
stationary and integrated of order one, I(1). In fact, they indicated the existence of long memory,
fractional integration I(d), 0 < d < 1. Depending on the particular value of d the climate variables are
stationary or non-stationary climate variables as we will see in section 3. Clearly, the autocorrelation
functions of figure 1 confirm the cyclical behavior observed in the four paleoclimate variables and show
evidence of strong persistence and long memory.

The periodograms show peaks away from the zero frequency for all the series, confirming the believe
that the series contain cyclical and long memory characteristics, different from typical spectral shapes of
economic I(1) variables, see Granger (1966).

Even if those variables are stationary, it is possible to use alternative time series modeling. For example,
Kaufmann and Juselius (2013) and Davidson et al. (2015) use vector error correction models (VECM) with
full rank VECM models (no reduced rank as in the case of I(1) and cointegrated variables). Alternatively
in the stationary situation it is more natural to consider a VAR model in levels with exogenous orbital
variables, as in Castle and Hendry (2020), or as was done by Blazsek and Escribano (2022) and Blazsek
and Escribano (2023) who consider a multivariate Student-t score-driven model with the exogenous orbital
variables of Milankovitch cycles (eccentricity, obliquity and precession), that improves previous dynamic
specifications considered.

The graph of the explanatory variables is given in figure 2. They also show as expected a high amount
of cyclical behaviour which is though not absolutely regular.

The autocorrelation functions and periodograms of the explanatory variables may not be so instructive
but are given for completeness. It is not surprising to see the cyclical as well as persistent behaviour
confirmed in these variables as well. Eccentricity with a cycle of 100 thousand years, obliquity with a
cycle of 40 thousand years and precession with a cycle of 23 thousand years as they are indicated by the
periodograms of figure 2. Eccentricity has a similar cycle as in Temperature, Ice volume and CO2 and
the corresponding peak of the periodogram seems to be at a common frequency.
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Figure 1: Paleoclimate series, autocorrelation and partial autocorrelation functions and peri-
odograms: Temperature, Ice, CO2

3 Modeling the Long Memory of the Cyclical Trends of Paleocli-
mate Data

In order to model the cyclical behavior of the paleoclimate data, we apply the model order selection tech-
nique developed in Leschinski and Sibbertsen (2019). The idea of this method is sequentially estimating
and filtering the cyclical frequencies of a long-memory time series. The basic idea is as follows: In a
first step the maximum of the periodogram is taken and it is tested if this is a significant cyclical peak.
Next, the memory parameter at this peak is estimated by local Whittle estimation and the respective
Gegenbauer filter is applied to the time series. This procedure is repeated until no significant peak is left.

The model class assumed for the data is the k-factor Gegenbauer model (or GARMA-filter) given by

k∏
a=1

(1− 2cosγaL+ L2)daXt = ut, (1)

where ut is a linear short-memory process with continuous, bounded and positive spectral density and da
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Figure 2: Orbital Series with autocorrelation and partial autocorrelation functions and peri-
odograms: Eccentricity, Obliquity, Precession

is the memory parameter associated with the a-th cyclical frequency γa. L denotes the usual lag-operator.
The spectral density of model (1) is given by

fX(λ) = fu(λ)

k∏
a=1

|2(cosλ− cosγa)|−2da . (2)

For da > 0 the spectral density has poles due to the long memory behaviour at the cyclical frequencies
γa with a = 1, . . . , k. If ut is a finite order ARMA process the process (1) coincides with the GARMA-
k model of Giraitis and Leipus (1995) which is causal, invertible and has long memory if |da|< 1/2

∀γa ∈ (0, π) and if |da|< 1/4 ∀γa ∈ {0, π} and it is fractional and nonstationary if 1/2 < da < 1.

Let now the partial parameter vector θ0i = (γ0
1 , . . . , γ

0
i , d

0
1, . . . , d

0
i )

′
contain a subset of the true cyclical

frequencies γ0
a and the respective memory orders d0a at these frequencies for some non-negative integer i

and let θ0 be an empty vector. Further, we denote the Gegenbauer filter by GG(γa, da) = (1−2cosγaL+

L2)da and ∆(θi) =
∏i

a=1 GG(γa, da). If k0 is the true order of our process the procedure is motivated by
the observation that for i < k0 the filtered process is still a Gegenbauer process but of order k0 − i and
thus with unbounded spectral density. For i ≥ k0 the filtered series is short memory having a bounded
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spectral density.

To test if there are still any remaining unbounded peaks in the spectral density a modified version of the
Walker (1914) g-test is applied. The test statistic is defined as

G∗ = max

{
I(λj)

f̂(λj)

}
− log n, (3)

where I(λj) is the periodogram and f̂(λj) is an estimator of the spectral density detailed in Leschinski
and Sibbertsen (2019).

Using this the estimated model order is obtained by

k̂ = min
i
{i such that G∗(θ̂i) < gcrit(α)}, (4)

where gcrit(α) is the critical value of G∗ at the significance level α. A consistent estimator γ̂a for the
Gegenbauer frequency γa can be obtained by the maximum of the periodogram (see Abadir et al. (2024))

γ̂a(θi) = argmax
λj

I(λj , θi) (5)

and the cyclical local Whittle estimator of Arteche and Robinson (2000) applied to the periodogram of
the filtered series can serve as an estimator d̂a for the memory parameter.

Abadir et al. (2024) suggest an alternative model to the Gegenbauer process applied in our approach.
They point out that the distribution of the local Whittle estimator is unknown for an unknown cyclical
frequency and thus that the Gegenbauer model requires known cyclical frequencies. In our situation the
cycles are driven by geophysical variables and therefore not completely random. Here the specification
of the number of relevant frequencies is the more important goal and estimating the relevant frequencies
is to some extend of a confirmatory nature. This is why we apply the model selection framework of
Leschinski and Sibbertsen (2019) which relies on the Gegenbauer model and use the maximum of the
periodogram as an estimator for the cyclical frequency as suggested by Abadir et al. (2024).

Altogether our filtering procedure contains of the following steps:

Step 0: Initialize the procedure with i = 0 and set θ̂i to be the empty vector θ0

Step 1: Apply the filter ∆T (θ̂i) to the time series Xt

Step 2: Test whether there are any significant poles in the spectrum of ∆T (θ̂i)Xt using the modified G∗

test in (3) and proceed to step 3 if the test rejects the null hypothesis that k0 = i otherwise procede
to step 5

Step 3: Estimate γ0
i+1 and d0i+1

Step 4: Increase i by 1 and go back to step 1

Step 5: Estimate k0 by the estimator (4).

We now apply the above described methodology to our paleoclimate data. We estimate the model order
k, this is the number of cyclical frequencies in the data, the frequencies γa and the memory parameter
da for the respective frequency. The results for the paleoclimate variables are given in table 1.

It can be seen that the results are synchronous for the first peak in the periodogram for Temperature and
Ice and for CO2 respectively. For all three series we find a cyclical component at around γ̂a1

= 0.063.
For CO2 this is the only cyclical component in the model. In all three variables this component is
associated with a stationary memory parameter since the parameter d̂a1

is lower than 0.5. The memory
is though higher for temperature and ice. For temperature and ice we do find in addition a second cyclical
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Temperature Ice CO2

k 2 2 1
γa 0.0628; 0.1509 0.0628; 0.1509 0.063
da 0.4221; 0.5219 0.4808; 0.6948 0.3421

Table 1: Results for the paleoclimate variables: Model order (k), cyclical frequencies (γa) and
memory parameter (da)

component at around γ̂a2
= 0.15. For both variables this component is associated with a non-stationary

long memory parameter d̂a2
where 0.5 < d̂a2

< 1. The component is not present for CO2.

In order to see, if this cycle can be related to one of our explanatory orbital variables we do the same
exercises for these three variables. The results can be found in table 2.

Eccentricity Obliquity Precession
k 5 2 1
γa 0.0157; 0.0635; 2.3894; 0.1141; 2.4026 0.1569; 0.2145 0.2667
da 0.4987; 0.4547; 0.1; 0.8264; 0.1081 0.9999; 0.9519 0.5171

Table 2: Results for the orbital variables: Model order (k), cyclical frequency (γa) and memory
parameter (da)

For eccentricity we find five cyclical components one of them being the cycle at γ2 = 0.0635. It should
be noted that this is not the smallest cyclical frequency for eccentricity. The first one is γ1 = 0.0157.
Thus, the dominant cyclical frequency for the three paleoclimate variables is a long cycle but it is not
the zero frequency. Also for eccentricity the cyclical frequency of γ2 = 0.0635 is associated with a high
but stationary long memory parameter showing that eccentricity also seems to have some irregularities
over time. None of the other four frequencies can be found in the paleoclimate variables though.

For obliquity the first cyclical frequency is γ1 = γ̂a2 = 0.1569 which can be found also in temperature
and ice. The I(1) behaviour of obliquity at this frequency may also explain the non-stationarities at
temperature and ice at this frequency. Precession has one cyclical component which can be found in
neither of the paleoclimate variables.

For all considered variables we tested if the cycles are possibly deterministic rather then stochastic. For
this we modeled the cycles with a sinus and cosinus function at the respective frequency and regressed
the data on this cycle. After doing so we still found the same cycles in all variables indicating that the
cycles are indeed stochastic and not deterministic.

Summarizing, we find that the first cyclical frequency in all paleoclimate variables can be linked to
eccentricity creating a cycle of length 100 thousand years. The second cyclical component in temperature
and ice can be linked to obliquity creating a cycle of length 40 thousand years. The cycle of precession
is of length 23 thousand years.

In order to see if our procedure describes the data well we apply the respective Gegenbauer filter to the
paleoclimate time series. The filtered series are given in figure 3 looking much more regular then the
original series.

4 Cyclical Fractional Cointegration (Common Cycles)

From the results in the previous section it can be seen that the 100.000 years cycle of eccentricity is also
dominant in all paleoclimate variables. Further, Temperature and Ice are also driven by the 40.000 years
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Figure 3: Filtered Series (residuals) and their autocorrelation and partial autocorrelation function
and periodogram: Temperature (û1t), Ice (u2t), CO2 (u3t) from equation (1)

cycle of obliquity. To get a better understanding on how these variables are connected at the respective
cycles we test in this section for cyclical fractional cointegration using the method described in Voges and
Sibbertsen (2021).

This approach is again based on the GARMA filter introduced in the previous section. It is general in
the sense that it allows cointegration at a specific cyclical frequency γ without assuming cointegration at
other frequencies. Further, the cointegration vector βγ as well as the memory reduction bγ are frequency-
specific. However, cointegration across frequencies is exluded by this approach. The approach assumes
the bivariate system

BZt = νt with B =

1 −β

0 1

 , (6)

where Zt is the observed bivariate time series system and νt is an unobservable underlying process. By
construction all cointegrating relations are subject to the same cointegrating vector (1,−β). The first
element of νt is what is known as the cointegration residuals. In terms of the GARMA filter νt can be
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written as

νt =

 ∏k1

l1=1(1− cosγl1L+ L2)−(dl1
−bl1 )ε1t∏k2

l2=1(1− cosγl2L+ L2)−dl2 ε2t

 . (7)

If now β ̸= 0 and bl1 > 0 the vector Zt is cointegrated. Note that the cointegration strength bl1 can differ
between frequencies.

We test for cointegration by performing a t-test on the null hypothesis β = 0. The memory parameters
as well as the cointegrating vector β are estimated simultaneously by the generalized local Whittle
estimator derived in Voges and Sibbertsen (2021). They prove consistency and asymptotic normality of
the generalized local Whittle estimator. This result on asymptotic normality is used to construct a t-test
on β = 0.

In this paper we understand fractional cointegration in a wider sense as outlined in Hualde and Nielsen (2023).
We do not assume that the memory parameters need to be equal at the respective frequency. We speak
of cointegration if the strength of the memory is reduced through the cointegrating relation.

Cointegration may appear at the frequencies γ̂a1 = 0.0628 and γ̂a2 = 0.1509. As our approach can only
identify cointegration at one cyclical frequency all other cycles are filtered out of the data before applying
our test. We test pairwise all combinations which have the respective frequencies in common as the above
described approach is bivariate. We estimate the fractional cointegration parameter β and apply a t-test
for the hypothesis β = 0 at the 5% significance level. We reject the null hypothesis of no cointegration
if the absolute value of the test statistic T ∗ exceeds the critical value of c = 1.95996. The bandwidth
parameter for the local Whittle estimator was chosen as m = N0.6 with N denoting the sample size but
the results proved to be robust against other choices. The results for the frequency γ̂a2 = 0.1509 are
provided in table 3

β̂ T ∗ decision d-b
Temperature - Ice 0.3186 2.3218 cointegration 0.1745
Temperature - Obliquity 0.776 5.6560 cointegration 0.1509
Ice - Obliquity 1.0296 7.5035 cointegration 0.275

Table 3: Results for cointegration at the second common frequency

As can be seen we find cyclical cointegration for all pairs for the 40.000 year cycle. The earths obliquity
cycle also drives temperature and ice. In addition there is a cointegrating relation between temperature
and ice as well. Here we see that the earth obliquity is responsible for a long-term equlibrium between
temperature and ice volume.

The results for the frequency γ̂a1 = 0.0628 are displayed in table 4

β̂ T ∗ decision d-b
Temperature - Ice 0.55 4.009 cointegration 0.02
Temperature - CO2 -0.2156 -1.5711 no cointegration
Ice - CO2 -0.0822 -0.5994 no cointegration
Temperature - Eccentricity -0.3978 -2.8989 cointegration 0.0180
Ice - Eccentricity -0.4648 -3.3874 cointegration 0
CO2 - Eccentricity -0.6322 -4.6071 cointegration 0

Table 4: Results for cointegration at the second common frequency

For the smaller frequency γ̂a1 = 0.0628 describing the 100.000 year cycle all of the paleoclimate variables
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are cointegrated with a negative cointegration parameter with the exogeneous variable Eccentricity. Thus
the earth eccentricity drives the cycles of all paleoclimate variabels. In addition to this we find fractional
coointegration between temperature and ice with a positive coefficient for this cycle as well. We cannot
identify a fractional cointegration relation between temperature or ice and CO2. For temperature and
CO2 the value of the test statistic is though very close to the critical value for the 10% significance
level. Further, we consider a two-sided test rather then a one-sided. So with CO2 the findings are
slightly unsharp. A reason for this might be that CO2 is lagged to temperature and we also test for
contemporaneous cointegration.

It should be once again emphasized that these results are cointegration results for the respective cyclical
frequencies after a priori filtering out all other cyclical frequencies. So they may seem counter intuitive
from a first glance. For instance it may be expected to have a negative coefficient for the cointegration
relation of temperature and ice rather than a positive. However, if we run a regression of temperature
on ice at the zero frequency the coefficient becomes significantly negative as expected.

The cycles of the earth precession cannot be found in the paleoclimate variables and thus do not lead to
cointegrating relations.

Summarizing our results we have for temperature from the fitted k-factor Gegenbauer model

(1− 2cos(0.0628)L+ L2)0.42(1− 2cos(0.1509)L+ L2)0.52tempt = û1t (8)

and for obliquity we get

(1− 2cos(0.1509)L+ L2)0.99(1− 2cos(0.2145)L+ L2)0.95obt = û2t. (9)

To test for cyclical cointegration between these two variables we have to a priori filter out the frequency
γa1 = 0.0628 for temperature and γa3 = 0.2145 for obliquity. This gives the model

(1− 2cos(0.1509)L+ L2)0.52t̃empt = û1t (10)

(1− 2cos(0.1509)L+ L2)0.99õbt = û2t

and thus

t̃empt = (1− 2cos(0.1509)L+ L2)−0.52û1t (11)

õbt = (1− 2cos(0.1509)L+ L2)−0.99û2t.

Let now in our cointegration setup be

zt =

t̃empt

õbt

 (12)

and

1 −β

0 1

 (13)

we obtain the cyclical cointegration model
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Bzt =

t̃empt − βõbt

õbt

 (14)

=

(1− 2cos(0.1509)L+ L2)−0.52ũ1t − β(1− 2cos(0.1509)L+ L2)−0.99ũ2t

(1− 2cos(0.1509)L+ L2)−0.99ũ2t


=

(1− 2cos(0.1509)L+ L2)−0.15ε̂1t

(1− 2cos(0.1509)L+ L2)−0.99ũ2t


with β = 0.776 being the cointegration parameter. The t-test for the null hypothesis of no cyclical
cointegration which is β = 0 has a test test statistic of T ∗ = 5.656 which is larger then the 5% critical
value of 1.95996 leading to a rejection of the null hypothesis of no cointegration at the frequency 0.1509.

5 Constructing a Forecasting Model

In the last sections we discovered which of the earth variables cycles are relevant for the paleoclimate
variables and which are the driving and relevant variables. However, as our cyclical cointegration approach
relies on pre-filtering of the not relevant cycles it is not suitable for forecasting earth temperature and
ice volume. We therefore need to go an alternative route which is outlined in this section.

5.1 Zero Frequency Long-Memory with a VAR(1).

In Bauwens et al. (2023), extending the results of Chevillon et al. (2018) (see also Schennach (2018)) it
was shown that the zero frequency long-memory observed in a univariate time series could be the result
of the marginalization of an infinitely large VAR(1) system that satisfies certain specific assumptions.
Denote by n the number of time series in the VAR(1) system and t is the time dimension of the system.
The n time series in the VAR(1) system are collected in the n × 1 vector yn,t = [y1,t, y2,t, . . . , yn,t] and
we have the following VAR(1):

(In −AnL)yn,t = ϵn,t (15)

where ϵn,t is a n×1 vector of identically and independently distributed innovations with zero expectation
and variance–covariance matrix Σn. This variance-covariance matrix Σn could be diagonal but it is not
a necessary condition. Denote the matrix polynomial in the lag operator (In −AnL) as (In −AnL) =

A0
n (L). Finally An is a n×n matrix of coefficients. This matrix was defined by Chevillon et al. (2018) as

a square Toeplitz matrix. Furthermore, Bauwens et al. (2023) show that if An and the generic entries of
the former matrix anij are defined in such a way that the following three conditions hold, for "small" ε > 0

and ε′ > 0:

1. The elements of the main diagonal of An, that is, anii for i = 1, 2, . . . , n are close to 1/2 (anii ∈
(1/2− ε, 1/2])

2. The elements outside the main diagonal of An, that is, anij for i ̸= j are non-negative close to zero
and of order O

(
n−1

)
(0 ≤ nanij < ε′).

3. the sums of the elements of a row and of column of matrix An is equal to 1 (
∑n

i=1 a
n
ij = 1 and∑n

j=1 a
n
ij = 1),
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model (15) is compatible with the presence of long memory in the marginalized time series (yi,t for
i = 1, 2, . . . , n) and compatible with the theoretical results of both Chevillon et al. (2018) and Schen-
nach (2018). In particular Bauwens et al. (2023) propose the following definition for An that guarantees
the previous three conditions and is compatible too with Chevillon et al. (2018) and Schennach (2018):

An = d0In +
1− d0
n− 1

(Jn−In) (16)

=
d0n− 1

n− 1
In +

1− d0
n− 1

Jn

=
d0n− 1

n− 1
In +

1− d0
n− 1

1n × 1′n,

where d0 is close to 1/2, In and Jn are the identity matrix and a square matrix of ones respectively. Note
that Jn is a circulant matrix of rank one and it is possible to write Jn = 1n × 1′n, where 1n is a n × 1

vector of ones. Hence for a generic observation of the VAR(1) yi,t (15)-(16) it is possible to write:

yi,t =
(d0n− 1)

(n− 1)
yi,t−1 +

(1− d0)

(n− 1)
1n × 1′nyn,t−1 + ϵi,t

=
(d0n− 1)

(n− 1)
yi,t−1 +

(1− d0)n

(n− 1)
ȳt−1 + ϵi,t (17)

ȳt =
1

n
1′nyn,t =

1

n

n∑
i=1

yi,t.

Hence, as stated by Bauwens et al. (2023) yi,t can be expressed as the weighted average of the idiosyncratic
innovation ϵi,t, the lagged value yi,t−1 and the lagged cross-section average ȳt−1. This cross-section
average or common factor behaves like a random walk for finite n. This fact was shown by Bauwens
et al. (2023) as the columns of An sum to unity. Then we could write 1′n ×A0

n (1) = 1′n × (In −An) = 0

and 1′n ×A0
n (L) = 1′n × (In −AnL) = (1− L)× 1′n, and hence we can write for ȳt:

ȳt = ȳt−1 + ϵ̄t (18)

ϵ̄t =
1

n

n∑
i=1

ϵi,t.

As shown in Bauwens et al. (2023) the variance of the average innovation in (18) ϵ̄t decreases as n gets
larger, and hence ȳt correspond to a "damped trend" process ȳt = Op

(√
T/n

)
= op (1). This "damped

trend" process is the source of long memory in the time series of the multivariate VAR(1) model (15).

The previous set-up can be extended to the case of the Nyquist frequency and harmonic frequencies.
Another important implication of (17) is that all the marginalized time series of the VAR(1) (15) share a
common factor, hence it is clear that we have cointegration between any two time series of (15) and that
the cointegration vector will be of the [1,−1] form.

5.2 Nyquist Frequency Long-Memory with a VAR(1)

We define the following VAR(1):

(In +AnL)yn,t = ϵn,t, (19)
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with An defined as in (16). Denote the matrix polynomial in the lag operator (In +AnL) as (In +AnL) =

Aπ
n (L). Note that now for a marginalized time series of the vector yn,t it is possible to write:

yi,t = − (d0n− 1)

(n− 1)
yi,t−1 −

(1− d0)

(n− 1)
1n × 1′nyn,t−1 + ϵi,t

= − (d0n− 1)

(n− 1)
yi,t−1 −

(1− d0)n

(n− 1)
ȳt−1 + ϵi,t (20)

ȳt =
1

n
1′nyn,t =

1

n

n∑
i=1

yi,t.

And as the columns of An sum to unity, we have 1′n×Aπ
n (−1) = 1′n×(In +An (−1)) = 1′n×(In −An) = 0

and 1′n ×Aπ
n (L) = 1′n × (In +AnL) = (1 + L)× 1′n, and hence we can write for ȳt:

ȳt = −ȳt−1 + ϵ̄t (21)

ϵ̄t =
1

n

n∑
i=1

ϵi,t.

Now, if we compare (17) with 20), we move from a positive AR(1) in terms of the lagged yi,t to a negative
one. That is we move from the zero to the Nyquist frequency. And now in (20) the "damped" integrated
process (21) is associated to the Nyquist frequency.

5.3 Complex value Long-Memory with a VAR(1) associated to Harmonic
frequencies.

If we define the following VAR(1):

(
In − e±iγAnL

)
yn,t = ϵn,t, (22)

with An defined as in (16), and e±iγ = cos (γ)± i sin (γ), γ is a harmonic frequency such that γ ∈ (0, π)

and i =
√
−1. Hence, we face a complex value VAR(1). Denote the matrix polynomial in the lag

operator
(
In − e±iγAnL

)
as
(
In − e±iγAnL

)
= A±γ

n (L). Note that now for a marginalized time series
of the vector yn,t it is possible to write:

yi,t = e±iγ (d0n− 1)

(n− 1)
yi,t−1 + e±iγ (1− d0)

(n− 1)
1n × 1′nyn,t−1 + ϵi,t

= e±iγ (d0n− 1)

(n− 1)
yi,t−1 + e±iγ (1− d0)n

(n− 1)
ȳt−1 + ϵi,t (23)

ȳt =
1

n
1′nyn,t =

1

n

n∑
i=1

yi,t.

As the columns of An sum to unity, we have 1′n × A±γ
n

(
e∓iγ

)
= 1′n ×

(
In − e±iγAn

(∓iγ
))

= 1′n ×
(In −An) = 0 and 1′n ×A±γ

n (L) = 1′n ×
(
In − e±iγAnL

)
=
(
1− e±iγL

)
× 1′n, and hence we can write

for ȳt:
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ȳt = e±iγ ȳt−1 + ϵ̄t (24)

ϵ̄t =
1

n

n∑
i=1

ϵi,t.

Now, if we compare (17) with (23), we move from a positive AR(1) in terms of the lagged yi,t to a complex
valued one associated to the harmonic frequency γ. And now in (23) the "damped" integrated process
(24) is associated to the harmonic frequency γ.

5.4 Long-Memory with a VAR(2) associated to Harmonic frequencies

Finally to obtain a real value VAR(2) with long-memory for the marginalized time series we need to
include both the complex conjugate polynomials of order one and have:

(
In − e−iγAnL

) (
In − e+iγAnL

)
yn,t = ϵn,t (25)(

In −
[
e−iγ + e+iγ

]
AnL+ e−iγe+iγA2

nL
)
yn,t = ϵn,t(

In − 2 cos (γ)AnL+A2
nL
)
yn,t = ϵn,t.

In model (25) we assume that An follows (16) and in the case of A2
n we have1 that:

A2
n =

(
d0n− 1

n− 1
In +

1− d0
n− 1

1n × 1′n

)(
d0n− 1

n− 1
In +

1− d0
n− 1

1n × 1′n

)
(26)(

d0n− 1

n− 1

)2

In +

(
1− d0
n− 1

)2

n [1n × 1′n] + 2

(
d0n− 1

n− 1

)(
1− d0
n− 1

)
[1n × 1′n]

=

(
d0n− 1

n− 1

)2

In +

[(
1− d0
n− 1

)2

n+ 2

(
d0n− 1

n− 1

)(
1− d0
n− 1

)]
[1n × 1′n]

=

(
d0n− 1

n− 1

)2

In +

(
n
(
1− d20

)
− 2 + 2d

(n− 1)
2

)
[1n × 1′n] .

Hence based on (25), (16) and (26) it is possible to write for a marginalized time series of the vector yn,t:

yi,t = 2 cos (γ)
(d0n− 1)

(n− 1)
yi,t−1 + 2 cos (γ)

(1− d0)

(n− 1)
1n × 1′nyn,t−1 (27)

−
(
d0n− 1

n− 1

)2

yi,t−2 −

(
n
(
1− d20

)
− 2 + 2d

(n− 1)
2

)
1n × 1′nyn,t−2 + ϵi,t

= 2 cos (γ)
(d0n− 1)

(n− 1)
yi,t−1 + 2 cos (γ)

(1− d0)n

(n− 1)
ȳt−1

−
(
d0n− 1

n− 1

)2

yi,t−2 −

(
n
(
1− d20

)
− 2 + 2d

(n− 1)
2

)
nȳt−2 + ϵi,t

yi,t = 2 cos (γ)
(d0n− 1)

(n− 1)
yi,t−1 + 2 cos (γ)

(1− d0)n

(n− 1)
ȳt−1 (28)

−
(
d0n− 1

n− 1

)2

yi,t−2 −
(
1− d20

)
n

(n− 1)
ȳt−2 + ϵi,t + op (1) .

1Note that in (26) we use the fact that 1n × 1′n is a circulant matrix with all its elements equal to one and we
have that (1n × 1′n) (1n × 1′n) = n (1n × 1′n).
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If we denote the polynomial in the lag operator in (25) as Aγ
n2

(L) =
(
In − 2 cos (γ)AnL+A2

nL
2
)

it is
possible to see that 1′n×Aγ

n2

(
e±iγ

)
= 1′n×02 and also that 1′n×Aγ

n2
(L) = 1′n×

(
In − 2 cos (γ)AnL+A2

nL
2
)
=(

1′n − 2 cos (γ)L1′n + L21′n
)
= 1′n

(
1− 2 cos (γ)L+ L2

)
. Hence, as we have that 1′n×Aγ

n2

(
e±iγ

)
= 0 and

1′n ×Aγ
n2

(L) = 1′n
(
1− 2 cos (γ)L+ L2

)
it is possible to say that the damped trend ȳt will behave like a

non-stationary process integrated at the frequency γ. That is, we can write:

(
1− 2 cos (γ)L+ L2

)
ȳt = ϵ̄t. (29)

Finally, in the case of the VAR(2) (25) it is clear from (28) that all the marginalized time series of the
VAR(2) share the common behavior of the damped trend associated to the harmonic frequency γ. Hence
any two time series of the VAR(2) are cointegrated with vector [1,−1]. That is, we have contemporaneous
cointegration between processes with cyclical long memory as in the methodology proposed by Voges and
Sibbertsen (2021).

5.5 Monte Carlo Experiment

We run a Monte Carlo Experiment with n = 1601 and T = 4000 replications with d0 = 0.499 for the
process (25) and An as in (16) and (26) for γ = π/30.

We do the same for a VAR(2) with An defined as in example 1 in Chevillon et al. (2018)(see also
expressions (27) and (28) in the Monte Carlo Section of Bauwens et al. (2023) and figure 2 in Chevillon
et al. (2018)). In Figure 4 we collect the results on the average autocorrelation function (ACF), the
average partial autocorrelation funcion (PACF) and the average periogram of the first marginalized time
series y1,t from the VAR(2) model (25).

From Figure 4, we have evidence of a long-memory behavior in y1,t associated to the frequency γ = π/30.
In figure 5 we present also the average correlogram and periodogram of the residuals from a regression
with y1,t as dependent variable and y2,t as explanatory variable.

Figure 5 shows that the residuals do not seem to have long-memory. That is in figure 5 we have a pattern
compatible with a stationary AR(2) process. Hence, it seems that the long-memory behavior is common
between y1,t and y2,t. The source of the long memory behavior present in y1,t and y2,t and for all the
marginalized time series of the VAR(2) is the damped trend

(
1− 2 cos (γ)L+ L2

)
ȳt = ϵ̄t. Clearly any

of the time series of the VAR(2) are cointegrated with any of the remaining time series of the VAR(2),
as they share a common damped trend ȳt (that is,

(
1− 2 cos (γ)L+ L2

)
ȳt = ϵ̄t). This situation will be

more clearly shown when we present the results of the test proposed by Voges and Sibbertsen (2021).
This allows us to test for cointegration between time series with a cyclical long-memory behavior3.

In figure 6 we present the average correlogram and periodogram of the residuals of a regression of y2,t
on y2,t−1, y1,t−1 and y1,t−2. That is, we use y2,t and y2,t−1 as an approximation of ȳt−1 and ȳt−2 in (27)
and also two lags of y1,t (y1,t−1 and y1,t−2) to deal with the stationary AR(2) in the process followed by
the marginalized time series of the VAR(2). So, we use y1,t = β0y2,t + β1y2,t−1 + β2y1,t−1 + β3y1,t−2 + ut

which is similar to our forecasting equation in the following section.

From Figure 6, we have evidence that the residuals of our forecasting equation are almost free from serial

2Note that we have 1′n × Aγ
n2

(
e±iγ

)
= 1′n × Aγ

n2

(
e±iγ

)
= 1′n ×

(
In − 2 cos (γ)Ane

±iγ +A2
ne

±i2γ
)

=(
1′n − 2 cos (γ) e±iγ1′n + e±i2γ1′nAn

)
=

(
1′n − 2 cos (γ) e±iγ1′n + e±i2γ1′n

)
= 1′n

(
1− 2 cos (γ) e±iγ + e±i2γ

)
= 1′n (1− 2 cos (γ) [cos (γ)± i sin (γ)] + [cos (2γ)± i sin (2γ)]) = 1′n

([
1− 2 cos (γ)2 + cos (2γ)

]
∓i [2 cos (γ) sin (γ)− sin (2γ)]) = 1′n × 0. As we know for the double angle sinus and cosinus formulas that
sin (2γ) = 2 cos (γ) sin (γ) and cos (2γ) = cos (γ)2 − sin (γ)2. Hence we have that 2 cos (γ) sin (γ) − sin (2γ) = 0
and also 1− 2 cos (γ)2 + cos (2γ) = 1− 2 cos (γ)2 + cos (γ)2 − sin (γ)2 = 1− cos (γ)2 − sin (γ)2 = 0.

3Note that in the periodograms of figure 5 we observe a peak at frequency π/30 as in figure 4 but if we compare
the scale of both pictures, the peaks in figure 5 are almost irrelevant compared to the peaks in figure 4. This
situation also happens for figure 6.
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Figure 4: ACF, PACF and periodogram of y1,t following the VAR(2) (25) with An from (16) on
the left and An from example 1 Chevillon et al. (2018) on the right
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Figure 5: ACF, PACF and periodogram for the residuals from y1,t = βy2,t + ut following the
VAR(2) (25) with An (16) on the left and An from example 1 Chevillon et al. (2018) on the
right
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Figure 6: ACF, PACF and periodogram for the residuals from y1,t = β0y2,t+β1y2,t−1+β2y1,t−1+
β3y1,t−2 + ut following the VAR(2) (25) with An (16) on the left and An from example 1 in
Chevillon et al. (2018) on the right
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Figure 7: Histogram for the estimator of d and the frequency from Leschinski and Sibbert-
sen (2019) for a VAR(2) from (25) with An from (16) on the left hand site and with An from
example 1 in Chevillon et al. (2018) on the right hand site

correlation, that is, by adding lags of y1,t and y2,t, we are able to deal with almost all the remaining serial
correlation observed in figure 5.

Figure 7 collects the histograms of the estimations of d and the frequency γ for the marginalized time
series y1,t, using the methodology proposed by Leschinski and Sibbertsen (2019). Note that the fre-
quency is properly estimated as π/30 ≃ 0.10472 and that the estimation of the memory parameter d in(
1− 2 cos (γ)L+ L2

)d
y1,t = vt ranges between 0.3 and 0.8. It is centered around 0.55.

Finally, in figure 8 we collect the histograms of the estimators of the cointegration test and the estimation
of β after we applied the cointegration methodology developed by Voges and Sibbertsen (2021). In
particular we applied Voges and Sibbertsen (2021) methodology when it is applied to y1,t and y2,t.
Clearly the estimations of β are very close to 1, as it could be expected if we pay attention to expression
(28). It shows that with the test of cointegration we always reject the null of no cointegration between
y1,t and y2,t. Note that the critical value is c = 1.96. The proportion of time that we reject the null is
100%.

6 Empirical Modeling and Forecasting of Paleoclimate Cyclical
Trends

6.1 In-Sample Forecasts

The previous section showed that a marginalized VAR(2) model is able to approximate cyclical long
memory and replicates cyclical cointegration. Therefore, interpreting earth climate as a high dimensional
system we approximate the findings on cyclical long memory and cointegration in the paleoclimate and
earth variables as a VAR(2) model. To make the model feasible for forecasting we include the cycle as
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Figure 8: Histogram for the estimator of β and the test statistic from Voges and Sibbertsen (2021)
for a VAR(2) from (25) with An from (16) on the left hand site and with An from example 1
inChevillon et al. (2018) on the right hand site

a deterministic sinus and cosinus function as it is common for modeling non stochastic cycles. Point of
departure is a reduced form VAR(2) model containing all possibly relevant variables.


tempt

icet

CO2t

 =


α01

α02

α03

+


α11(1) α12(1) α13(1)

α21(1) α22(1) α23(1)

α31(1) α32(1) α33(1)



tempt−1

icet−1

CO2t−1

 (30)

+


α11(2) α12(2) α13(2)

α21(2) α22(2) α23(2)

α31(2) α32(2) α33(2)



tempt−2

icet−2

CO2t−2



+


β10

β20

β30

 obt +


β11

β21

β31

 obt−1 +


γ10

γ20

γ30

 ecct +


γ11

γ21

γ31

 ecct−1

+


η10
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with


εtempt

εicet

εCO2t

 ∼ (0,


σ2
1 σ12 σ13

σ12 σ2
2 σ23

σ31 σ32 σ2
3

) and 0 again denoting the 3× 1 vector of zeros.

From this reduced form VAR(2) we end up estimating the following structural form VAR(2) model given
by equation (31), applying a general to specific selection procedure with white noise errors. Denoting
with ∆ecct = (1− L)ecct the first difference of eccentricity the parameter estimates are

ˆtempt = −8.11
(1.821) +

0.9274
(0.0372) tempt−1 −0.1378

(0.0371) tempt−2 − (31)

− 1.945
(0.0304)icet +

1.428
(0.2957) icet−1 +

0.3064
(0.0532) obt +

+ 221.2246
(53.422) ∆ecct +

0.0088
(0.0027) CO2t−1

ˆicet = 1.3725
(0.1475) −

0.0208
(0.0063) cos(γ1t) +

0.0108
(0.0062) cos(γ2t) +

0.8237
(0.0151) icet−1 −0.0236

(0.002) tempt −

− 0.1228
(0.0516)obt +

0.0904
(0.0526) obt−1 −7.5686

(6.1217) ∆ecct

ˆCO2t = 62.5923
(9.482) +0.6354

(0.2427) cos(γ1t) +
3.0829
(0.199) tempt −0.829

(0.291) tempt−1 −0.9251
(0.2297) tempt−2 −

− 0.9798
(3014)obt +

1.0178
(0.035) CO2t−1 −0.1637

(0.0324) CO2t−2

with an adjusted R2 of R̄2 = 0.9284 for temperature, of R̄2 = 0.961 for ice and an adjusted R2 of
R̄2 = 0.9697 for CO2. Estimating the model parameters in a VAR system does not significantly change
the results. We further applied the White heteroscedasticity test to the residuals of all three regressions. In
neither case we can reject the null hypothesis of homoscedasticity. The model contains the first differences
of eccentricity for temperature and ice. Examining the first difference of eccentricity shows the same cycle
as eccentricity itself as taking first differences does not change the cyclical behavior. We included the
first difference of eccentricity to our model as the parameters for the contemporaneous eccentricity and
the first lag of eccentricity are almost equal when including both separately. When including the first
difference of eccentricity the lag of eccentricity becomes insignificant. This shows that really change of
eccentricity is what is driving the paleoclimate variables rather then the level of eccentricity itself.

Our model fitted to the data is depicted in figure 9 for temperature, in figure 10 for ice and in figure
11 for CO2. The original series is given in black and the fitted model in red. Below the model fit the
residual series is plotted. It can be seen that our model provides a close fit to the original data.

We compare the forecasting performance of our model with the baseline model of Castle and Hendry (2020)
which has also been used in Blazsek and Escribano (2022). They applied the model

ˆtempt = −2.49 + 0.879tempt−1 + 0.008CO2t−1 − 301ecct (32)

+ 22.6eccobt − 9.8eccobt−1 + 25.5eccpret

ˆicet = 1.43 + 0.86icet−1 − 0.02tempt−1 + 102ecct

− 101ecct−1 − 0.04obt−1

− 5.07eccobt + 5.05eccobt−1 − 4.97eccpret

ˆCO2t = 218 + 0.853CO2t−1 + 1.34tempt−1 + 1400ecct − 3070ecct−1 − 13obt−1 +

+ 70.7eccobt−1 + 0.232ob2t

The two approaches differ clearly. The regression of Castle and Hendry does not include contemporaneous
values of temperature on ice volume and of ice volume on temperature. In addition Castle and Hendry
include the product of eccentricity and obliquity and the product of eccentricity and precession. The
regression for temperature does not include obliquity as a single variable and the regression for ice does
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Figure 9: Original Data Temperature (black), fitted model for temperature (red) and regression
residuals

not have contemporaneous values of obliquity as explanatory variable. In our regression all variables only
have a linear impact and precession is not included.

In order to see if the regression models are well specified we apply the Ljung-Box test to both models
testing the null hypothesis that the regression residuals are white noise.

Applying the Ljung-Box test to the residuals of our regression shows the good fit of our model. For
ice volume the Ljung-Box test cannot reject the null hypothesis of white noise residuals with a p-value
of p = 0.8262. For temperature the Ljung-Box test does not reject the null hypothesis of white noise
residuals either and has a p-value of 0.8649 and for CO2 the test has a p-value of p = 0.8595 not rejecting
the null of white noise residuals again. For the competing model the Ljung-Box test clearly rejects the
hypothesis of independent residuals for temperature and CO2. Castle and Hendry (2020) are aware of
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Figure 10: Original Data Ice (black), fitted model for ice (red) and regression residuals

the autocorrelation and mention that to solve it it might need a VAR(2) instead of a VAR(1). In fact,
we saw that a VAR(2) represents better the cyclical behavior observed in paleoclimate variables. The
p-values are displayed in table 5.

Cyclical Model Castle and Hendry
Temperature 0.8649 9.73510−7

Ice 0.8262 0.2595
CO2 0.8595 2.2x10−16

Table 5: p-values of Ljung-Box test

In a first exercise we give in sample forecasts for our model with a forecasting horizon until the end of
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Figure 11: Original Data CO2 (black), fitted model for CO2 (red) and regression residuals

the observation period. We start the forecasting at the last turning point of temperature and ice marked
by the last local maximum and minimum respectively which was 124 thousand years ago. Therefore, we
split our data into an in-sample period of 674 thousand years from the beginning of the data set to the
last local maximum for temperature and the last local minimum for ice and the remaining data set which
we use for forecasting. The in-sample forecasts are displayed in figure 12 where the red line is the forecast
of our cyclical model. Confidence bands for our forecast are displayed as the black lines. The data for all
three paleoclimate series leaves the confidence bands for the last observations. This is exactly the time
where humanity appeared on earth showing the influence humanity has to the earth climate even before
the beginning of the industrial time.

Our cyclical model tends to forecast the climate variables accurately most of the times. Only for the last
observations we find much lower forecasted values for temperature and CO2 and much higher forecasted
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Figure 12: In Sample forecasts for the cyclical model including confidence bands

values for ice. This is the time when humanity appears on earth and obviously also in its early stage has
a huge impact on the earth climate. This finding is in line with the findings of Castle and Hendry (2020)
and Blazsek and Escribano (2023).

Comparing the mean squared forecasting errors of the models (see table 6) shows that our cyclical model
reduces the forecasting error substantially.

Cyclical Model Castle and Hendry
Temperature 2.6675 3.8525
Ice 0.0286 0.0586
CO2 148.071 238.321

Table 6: Mean Square Forecasting Error for all four regressions

To check whether this is a significant improvement in the forecasting error we applied the Diebold-
Mariano test to the forecasts from our cyclical model and the Castle and Hendry model testing the
null hypothesis of equal forecast accuracy. The Diebold-Mariano test rejects this null hypothesis at all
levels for temperature (p-value = 1.5763x10−8), ice volume (p-value = 1.035x10−6) and CO2 (p-value
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= 1.75x10−12). Thus, our model provides significantly better forecasts then the Castle and Hendry
approach.

6.2 Forecasting Turning Points in the Climate Variables for the next 100.000
years

Castle and Hendry (2020) provide values for the earth obliquity and eccentricity for the next 100.000
years. We use our cyclical model to provide out of sample forecasts for temperature, ice and CO2 with
a forecasting horizon of h = 100 using all available data points. We provide forecasting including and
excluding the effect of humanity. The forecasts excluding the effect of humanity are obtained by excluding
the last 10.000 years from the in sample period and derive from this point a h = 110 step ahead forecast.
The forecasts are displayed in figure 13. It can be seen that excluding the effect of humanity gives
far lower forecasts for temperature and CO2 and higher values for ice volume. The difference becomes
smaller with a growing forecasting horizon. This may though be due to the long forecasting horizon also
compared to the length of the in sample period.

−800 −600 −400 −200 0

−10
−8

−6
−4

−2
0

2
4

Year

Out 
of S

amp
le Fo

reca
st Te

mpe
ratu

re

−800 −600 −400 −200 0

3.5
4.0

4.5
5.0

Year

Out 
of S

amp
le Fo

reca
st Ic

e

−800 −600 −400 −200 0

180
200

220
240

260
280

Year

Out 
of S

amp
le Fo

reca
st C

O2

Figure 13: Out of Sample forecasts including the effect of humanity (red) and excluding the
effect of humanity (blue)
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Our model indicates that we are currently in a maximum for temperature and CO2 and a minimum for
ice volume and that we will have the next turning point in the coming 1000 years. This finding is in line
with the findings of Blazsek and Escribano (2022). The next turning point is then estimated to be in
roughly 22.000 years.

We summarize the predicted out-of sample turning points given in thousand years in table 7. We find 6
turning points which coincides for temperature and ice volume while CO2 follows slightly behind these
variables.

TP 1 TP 2 TP 3 TP 4 TP 5 TP 6
Temperature 1 22 38 58 78 97
Ice 1 26 38 58 79 97
CO2 2 25 41 61 81 100

Table 7: Out of sample estimated turning points (TP)

In comparison we also estimate the turning points without the effect of humanity (see table 8). It is
generally assumed that humanity delays the turning point. We can confirm this for the nearest turning
points which all are predicted to should have been about 8000 years ago for temperature and slightly
later for ice and CO2. Including humanity though predicts that we are currently observing a turning
point. This effect is less pronounced for the next turning points which may be due to the fact that the
forecasts become closer anyway with increasing forecasting horizon.

TP 1 TP 2 TP 3 TP 4 TP 5 TP 6
Temperature -8 20 39 57 77 97
Ice -3 25 39 57 78 97
CO2 -6 23 41 60 80 100

Table 8: Out of sample estimated turning points without the effect of humanity (TP)

7 Conclusion

In this paper the cyclical behaviour of paleoclimate variables is modelled. We consider data from the
antarctic ice core dating back about 800.000 years of the earth temperature, the global ice volume and
atmospheric carbon dioxid (CO2) level. This data is strongly connected to exogeneous orbital variables
such as the changes in the non-circularity of the Earth’s orbit (eccentricity), changes in the tilt of the
Earth’s rotational axis relative to the ecliptic (obliquity) and the circular rotation of the rotational axis
itself (precession). It is well known that these orbital variables are highly cyclical with a period of 100.000
years for eccentricity, 41.000 years for obliquity and 19.000 to 23.000 years for precession, the so-called
Milankovich cycles. We investigate which of these cycles is dominant in the paleoclimate variables.

Using the model selection procedure for cyclical models of Leschinski and Sibbertsen (2019) it turns out
that the 100.000 years cycle of eccentricity as well as the 41.000 years cycle of obliquity can be seen
in all paleoclimate variables whereas the shorter cycle due to precession is not significant in any of the
paleoclimate variables.

A cyclical cointegration analysis confirms the relation of the paleoclimate variables to eccentricity and
obliquity, While the earth’s temperature and the ice volume are cointegrated with obliquity at the re-
spective cyclical frequency we find cyclical fractional cointegration for all paleoclimate variables with ec-
centricity at the respective frequency. It should be mentioned that for the 41.000 years cycle of obliquity
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also cyclical cointegration between temperature and ice can be established while none of the paleoclimate
variables are cyclically cointegrated at the 100.000 years cycle of eccentricity.

These findings are used to build a VAR(2)-type forecasting model for temperature, ice volume and CO2

including the two relevant cycles of eccentricity and obliquity and contemporaneous and lagged values
of temperature, ice volume, CO2, obliquity and eccentricity. All of these variables enter the regression
linearly. Adding nonlinear combinations as in Castle and Hendry (2020) does not improve the model
fit. The new model delivers superior forecasts in terms of the MSE than the model of Castle and
Hendry (2020). In addition our model indicates that the earth is currently in a turning point with a
maximum of temperature and CO2 and a minimum of ice volume with the next predicted turning point
to come in 22.000 years for temperature and 26.000 years for ice volume.

Our forecasts clearly show the effect of humanity even before the industrial time. The currently observed
and forecasted values are much lower for temperature and CO2 and much higher for ice volume when
excluding the effect of humanity from our forecasts.
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