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Abstract

In this paper, we introduce the concept of fractional integration for spatial autore-
gressive models. We show that the range of the dependence can be spatially extended or
diminished by introducing a further fractional integration parameter to spatial autoregres-
sive moving average models (SARMA). This new model is called the spatial autoregressive
fractionally integrated moving average model, briefly sp-ARFIMA. We show the relation
to time-series ARFIMA models and also to (higher-order) spatial autoregressive models.
Moreover, an estimation procedure based on the maximum-likelihood principle is intro-
duced and analysed in a series of simulation studies. Eventually, the use of the model is
illustrated by an empirical example of atmospheric fine particles, so-called aerosol optical
thickness, which is important in weather, climate and environmental science.

Keywords: Spatial ARFIMA, spatial fractional integration, long-range dependence, aerosol
optical depth.

1 Introduction

Long memory of time series is a well-studied problem in statistics (see, e.g., Beran 2017 for an

overview). A process is called to have long memory if the temporal autocorrelation is rather

slowly decreasing, e.g. compared to autoregressive processes. For instance, consider a fractional

Gaussian noise with H = d+ 0.5, which coincides with an ARFIMA(0,d,0) process

(1−B)dYt = εt ,
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where B denotes the backshift operator. This process has temporal long memory. For finite

samples Y1, . . . , YT , the model can be rewritten in a vector notation as follows

(I−B)dY = ε

with Y = (Yt)t=1,...,T , ε = (εt)t=1,...,T , I being the identity matrix and

B =


0 · · · 0 0

1 · · · 0 0
...

. . .
...

...

0 · · · 1 0

 .

Apparently, the process is a random walk if d = 1. Moreover, it is important to note that B

is a lower triangular matrix. This ensures that there is some lead-lag relation (i.e., there are

future and past values) and that the process is well-defined (i.e., (I−B) is non-singular).

Now, consider a spatial setting with n locations s1, . . . , sn instead of time points 1, . . . , T .

These locations are supposed to lie in a q-dimensional space D ⊂ Rq. Let Y = (Y (si))i=1,...,N .

In this case, there is no clear lead-lag relationship between the observations. Thus, the obser-

vation at one specific location s influences all adjacent regions, but the adjacent ones usually

also influence the observation in s. There are no “future” and “past” observations anymore

and, therefore, B is not necessarily a triangular matrix (this would only be the case for di-

rectional spatial processes, see, e.g., Basak et al. 2018; Merk and Otto 2021). Thus, further

assumptions are needed such that the process is well-defined. However, in general, we define a

spatial autoregressive fractionally integrated process analogously by

(I−B)dY = ε .

In spatial settings, the fractional difference operator (I−B)d serves to control both the spatial

autocorrelation and the fractional differencing. In this regard, time-series ARFIMA processes

and the spatial autoregressive fractionally integrated are slightly different. Moreover, for d = 1,

the model

(I−B)Y = ε

coincides with the commonly known spatial autoregressive model, where B determines the

spatial dependence structure. Usually, B is chosen as ρW with known, prespecified weighting

matrices W̃1, . . . ,W̃k and unknown scalar parameters ρ1, . . . , ρk, which has to be estimated

(see, e.g., Elhorst et al., 2012).
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In this paper, we extend this important class of models to spatial autoregressive fraction-

ally integrated moving average models (spARFIMA). For this reason, we introduce a parameter

d, which controls the range and the strength of the spatial dependence. Unlike the spatial au-

toregressive parameters controlling the degree of spatial dependence on all neighbours, the

parameter d influences the shape of the spatial autocorrelation function. That is, this parame-

ter allows to increase the range of the spatial dependence while the process is still stationary.

However, we always have to assume that I−B is non-singular, restricting the strength of the

spatial dependence and leading to a stationary process. Thus, the interpretation of d differs

from the time series case. Nevertheless, such a process can be considered to be long-range

dependent in the q-dimensional space.

Previous approaches of long-range/memory dependence models for spatial models have

mostly focussed on geostatistical settings. In contrast to the spatial econometrics framework,

where the spatial dependence is modelled via a suitable spatial weights matrix, which defines

the extent of the correlation to all adjacent regions, geostatistical approaches capture the spatial

dependence by properly choosing the covariance matrix of a multivariate process. The entries

of this covariance matrix usually follow a certain parametric covariance function C : Rq → R+

depending on the difference between two locations si−sj. In particular, two-dimensional spatial

lattice data has been considered, where the spatial dependence is separable (e.g., Robinson

and Sanz 2006). That is, the spatial dependence is fully symmetric in both ways for each

direction, meaning longitudinal and latitudinal directions. Hence, two separate backward-shift

operators can be applied for each index. They are also called double-geometric processes (cf.

Leonenko and Taufer 2013; Martin 1979). Boissy et al. (2005) introduce a fractionally integrated

spatial model by considering two d parameters, one for each backshift operator. Thus, this

process has a symmetric, long-range dependence in each direction and directly extends the

long-memory idea in time series analysis to spatial settings (two-dimensional separable and

symmetric settings). Further, Shitan (2008); Ghodsi and Shitan (2009) discussed this model.

While Boissy et al. (2005); Robinson and Sanz (2006) focus on Whittle-type estimations of the

long-range parameter, Beran et al. (2009) introduced a least-squares estimator. Moreover, a

central limit theorem for processes having such kind of spatial dependence has been introduced

by Lahiri et al. (2016), applicable even for higher-order and irregular lattices. In contrast

to these geostatistical approaches, we focus on so-called spatial econometrics models, which

account for spatial autoregressive dependence via weighting matrices.
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The remainder of the paper is structured as follows. In the following Section 2, the new

spARFIMA process is introduced. We present conditions for the existence and stationarity of

such a process, and we also point out the differences between time-series ARFIMA processes and

geostatistical long-memory processes that assumed separable spatial correlation. For this new

spatial model, a quasi-maximum likelihood estimator is derived in Section 3. Furthermore, we

carried out an extensive simulation study to show the performance of this QML estimator. The

results are presented in Section 4. Eventually, the model is applied to a real-world example

important in environmental science in Section 5. More precisely, we analyse raster data on

aerosol optical depth with different resolutions. Section 6 concludes the paper.

2 Spatial autoregressive fractionally integrated model

Let {Y (s) : s ∈ D} be a univariate process in the spatial domain D. For instance, D could be

the two-dimensional space of integers, i.e., D ⊂ Z2, this would cover classical image processes,

such as satellite or microscopic images. In spatial statistics, one would commonly refer to

this case as a two-dimensional regular lattice process. In econometrics, however, we are often

faced to irregular spatial lattice data, like in the case of polygon data (e.g., county-level data).

Thus, we generally assume that D is a subset with a positive volume of the q-dimensional

real space Rq. That is, contrary to Robinson (2020), we do not restrict ourselves on the case

that the process is regularly spaced in two dimensions (i.e., two-dimensional lattice) or that

the spatial correlation structure should be symmetric and separable. In our case, the process

is observed at a set of n locations, {s1, . . . , sn}. It is worth noting that this definition also

includes spatiotemporal processes if one of the q dimensions is the time axis. For a convenient

notation, let Y = (Y (si))i=1,...,n be a random vector of all locations and y = (y(si))i=1,...,n

its observation. In spatial econometrics, it is common to assume that the spatial dependence

structure is described by a spatial weights matrix B = (bij)i,j=1,...,n. The diagonal elements of B

are assumed to be zero to prevent self-influences, i.e., Y (si) is influenced by itself. In network

modelling, this is also known as self-loops.

We define a spatial autoregressive fractionally integrated moving average (spARFIMA)

process as follows

(I−B1)
dY = α+ (I−B2)ε (1)
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with ε being a vector of independent and identically distributed random variables. The site-

specific intercept α = (α1, . . . , αn)
′ can also be easily extended to linear regression model

Xβ. However, we initially focus on the general setting, namely having a site-specific intercept

α and general weights matrices B1 and B2 for the autoregressive and moving average term,

respectively.

In practice, the intercept is often replaced by a constant vector α = α1, and the weighting

matrices will be replaced by certain parametric models. In the general case, B1 and B2 would

consist of n(n− 1) unknown parameters, while there are only n observations. Classical choices

of such models are, for instance,

B1 = ρW1 and B2 = λW2 (2)

with known, pre-specified matrices W1 and W2, which describe the structure of the spatial

dependence, e.g., they could be first-order contiguity, k-nearest neighbours, or inverse-distance

matrices. Moreover, higher-order dependencies can be modelled by a linear combination

B1 =
k∑

i=1

ρiWi,1 ,

where Wi,1 is a contiguity matrix having positive weights for neighbours of spatial lag-order

i only. The order of the spatial autoregression would be k in this case. However, more com-

monly, first-order spatial autoregressive models are considered, and higher-order dependencies

are directly included in the spatial weighting matrix. Some recent approaches also considered

estimating B directly by assuming a certain degree of sparsity (e.g. Otto and Steinert 2018;

Lam et al. 2013; Lam and Souza 2016). Similarly, higher-order spatial lags can be included in

the moving average term, but this is only rarely found in practical applications.

The following theorem shows that the process is well-defined under common conditions

for spatial autoregressive models. That is, for any positive d there exists a one-to-one mapping

between Y and ε, i.e., Y = ξ−1(ε) ε = ξ(Y ).

Theorem 1. If all diagonal entries of B1 and B2 are zero, ||B1|| < 1, ||B2|| < 1, and d > 0,

the process given by (1) is well-defined and there exists one and only one real-valued sequence

Y (s1), . . . , Y (sn) that corresponds to ε(s1), . . . , ε(sn). Such a process is called a spatial autore-

gressive fractionally integrated moving average (spARFIMA) process.

5



Proof. The process is well-defined and real-valued if and only if (I − B1)
d is non-singular.

Applying a binomial expansion, we get that

(I−B1)
d =

∞∑
k=0

(
d

k

)
(−1)kBk

1 .

Because ||B1|| < 1, the series Bk
1 converges for k → ∞ and (I − B1) is invertible. Then,

A = (I−B1)
−1 and Y = Ad(α+ (I−B2)ε). Moreover, if ||B2|| < 1 (I−B2) is non singular

as well and there is one-to-one mapping from ε to Y .

This result makes use of the fact that(
(I−B)d

)−1
=

(
(I−B)−1

)d
. (3)

Thus, there is a close relation to spatial autoregressive models, and many results about the

existence of spatial autoregressive models also hold for the fractionally integrated model. To

be precise, if the spatial autoregressive process for d = 1 is well-defined, also the fractionally

integrated version exists. For instance, for the common specification with B = ρW, all results

about the range of the unknown parameter ρ are valid. This also includes higher-order models,

as demonstrated by Elhorst et al. (2012). However, it is important to note that d should be too

large; otherwise, the inverse in (3) gets unreasonably large, and its values are almost identical.

From a practical perspective, this means that the process is not causal; that is, the observations

cannot be determined by all other observations because the range of the spatial dependence

exceeds the spatial domain. Thus, the process tends to have either extremely large or small

values. This depends on the spatial setting, i.e., the number of locations, neighbourhood

structure, etc.

Like for spatial autoregressive models, we also observe locally varying mean levels and

heteroscedastic variances. However, the long-range dependence parameter d only affects the

global spill-over effects, i.e., those associated with the autoregressive term. Whereas the moving

average term only locally affects the first and second-lag neighbours – via B2 and B2B
′
2 –

the autoregressive has global spill-over effects, which are diminished or strengthened by the

parameter d. The mean vector and covariance matrix of a spARFIMA process is given in the

following proposition.

Proposition 1. Suppose that ε are identically and independently distributed random errors with

mean zero, variance σ2
ε and finite fourth moments. Moreover, assume that all diagonal entries
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of B are zero, ||B|| < 1, and d > 0. Then, the spatial autoregressive fractionally integrated

process given by (1) has mean

E(Y ) = (I−B1)
−dα (4)

and covariance matrix

Cov(Y ) = σ2
ε(I−B1)

−d(I+B2 +B′
2 +B2B

′
2)(I−B′

1)
−d . (5)

Proof. The process can easily be written in a matrix notation as

Y = (I−B1)
−d [α+ (I−B2)ε] .

The result can be obtained by straightforward calculations.

Below, because of their close similarity, we briefly discuss the relation to higher-order

SAR models. Such higher-order models typically include multiple spatially lagged variables.

For instance, a second-order spatial autoregressive model results by

Y = B1,1Y +B1,2Y + ε = (I−B1,1 −B1,2)
−1ε . (6)

In contrast, the polynomial expansion would lead to the following model

Y = (I−B1,1)(I−B1,2)Y + ε . (7)

If B1 and B2 takes the easiest parametric form as defined by (2), then the parameter space

of ρ1 and ρ2 for the process being stationary is much easier to obtain for (7) than for (6), as

already pointed out by Elhorst et al. (2012).

2.1 Illustration of Interaction between ρ and d

Eventually, we illustrate the interaction between the spatial autoregressive dependence implied

by the weight matrices and the range parameter d using some numerical examples. For simplic-

ity, we only focus on the spatial autoregressive fractionally integrated process without a moving

average component (i.e., B2 = 0). In contrast to time-series or directional spatial models, we

allowed B1 to be non-triangular. Thus, we have to assume that I − B1 is invertible. This, in

turn, limits the overall spatial dependency to a certain extent so that the interpretation of d

is different compared to the time-series case. That is, there is certain interaction between B1

and d, which we will describe below in more detail for the classic case with B1 = ρW1.
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In Figures 1 and 2, we have illustrated the influence of the central location s on its neigh-

bours of a 20× 20 spatial lattice for different values of ρ and d, where W1 is row-standardised

Queen’s contiguity matrix in all cases. We particularly focus on processes having a strong

spatial autocorrelation, namely ρ ∈ {0.85, 0.9}. The dependence of a standard spatial autore-

gressive model (i.e., d = 1) is depicted by the red curves in Figure 1. Obviously, increasing

values of ρ (solid vs dashed curves) lead to increased spatial dependence. Since I− ρW1 must

be invertible, the parameter ρ must be smaller than one that again limits the spatial auto-

correlation. That is, the fractional integration parameter d allows to increase or diminish the

spatial autocorrelation, which can be seen by the blue and black curves for d = 1.5 and d = 0.5,

respectively. The intensity of the spatial dependence implied by the blue curves can only be

achieved by choosing ρ very close to one for a spatial autoregressive process. However, such a

model is close to the ill-defined case.

Now, one might think that by choosing ρ appropriately, one could also achieve the spatial

dependence of any other d. However, this is not the case, as we illustrate in Figure 2. Here,

we consider a spatial autoregressive model with ρ = 0.85 and computed the distance of the

closest models with d = 1.5 and d = 2. That is, we selected ρ such that the squared distances

between the curves is minimised – this leads to ρ = 0.702 and ρ = 0.588 for d = 1.5 and

d = 2, respectively. Obviously, these curves differ in a way that a larger value of d increases

the size of the spatial dependence to the higher-order neighbours (i.e., the ones with a distance

of at least
√
5 ≈ 2.23), while dependence to directly adjacent regions is decreased. Hence, the

shape implied by different values of fractional integration parameter is different compared to

the classical autoregressive process.

3 QML estimation

If the spatial dependence structures B1 and B2 are unknown, i.e., it is not known in advance

which observations influence each other, each individual link is not generally identifiable. This

is a well-known result in spatial econometrics initially pointed out by Manski (1993) (see also

Gibbons and Overman 2012). For the spatial long-range dependence model, these results hold

equivalently. Generally, suppose that there are two different spatial weight matrices B1 ̸= B∗
1
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Table 1: Overview of nested models and special cases.

Weighting matrix Spatial dimension q Resulting model

Triangular matrix 1 Time-series ARFIMA(0, d, 1) model

Note: Adding a further weighting term (I−ηW)

with |η| < 1 leads to an ARIMA(1, d, 1) process

> 1 Causal/directional spatial ARFIMA process

Note: With B1 = ρW and ρ = 1 a non-

stationary spatial random walk is obtained if

d = 1

Non-triangular

matrix

1 Non-causal time-series model

> 1 Spatial ARFIMA process

Note: (I − B1) must be invertible (usually,

B1 = ρW with a known, standardised matrix

W and |ρ| < 1) to obtain a stationary and well-

defined spatial model (i.e., (I − B1)
d serves to

control both the fractional differencing and the

autoregression)
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and long-range dependence parameters d ̸= d∗. The model is observationally equivalent if

(I−B1)
du = (I−B∗

1)
du , that is, (8)

(I−B1)
d = (I−B∗

1)
d . (9)

Here, u denotes the mean and moving average component α + (I − B2)ε. Thus, if B1 is

identifiable, i.e., B1 = B∗
1, and B1 is not equal to a zero matrix, then d is uniquely identifiable.

That means that d can only be identified for spatially correlated processes. For the identifiability

of B1 all results that hold for spatial autoregressive models can be applied (see, e.g., Manski

1993). Thus, we follow the common parametric setting described above. That is, suppose that

α = α1, B1 = ρW1, and B2 = λW2.

Let ε be a vector of independent and identically distributed random variables with the

density fε. Then, the joint likelihood is given by

fY (y) =
∣∣(I− λW2)

−1(I− ρW1)
d
∣∣ fε(ξ(y)) , (10)

where y is the vector of observations. With fε being the density of a normal distribution with

mean zero and covariance matrix σ2
εI, the logarithmic likelihood function is obtained as

L(ϑ|y) = −N

2
log(2π)− N

2
log(σ2

ε)− log |I− λW2|+ d log |I− ρW1| −
1

2σ2
ε

ξ(y)′ξ(y) . (11)

The QML estimator of the parameters ϑ = (α, ρ, λ)′ is then given by

ϑ̂ = argmax
ϑ∈Θ

L(ϑ|y) . (12)

The parameter space Θ depends on the choice of the weight matrices W1 and W2, such that

the assumptions of Theorem 1 are fulfilled. The main drawback of the QML approach is the

scalability to large data sets because it involves the computation of the determinants of the

Jacobian, i.e., |I − ρW1| and |I − λW2|. To avoid repeatedly computing the determinant, we

suggest following the approach by Ord (1975) for both determinants, that is,

log |I− aW| =
n∑

i=1

log(1− aλW ) ,

where λW are the eigenvalues of W, which have to be computed only once. This is the main

bottleneck of the QML approach regarding scalability. An alternative method is the generalised

method of moments, for instance (see Doğan and Taşpınar (2013) for SARMA models).
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4 Simulation Studies

We conducted various simulation studies to analyse the algorithm’s performance and scalability.

For all of them, we considered the classical parametric setup defined above (α = α1, B1 = ρW1,

and B2 = λW2). The n × n spatial weight matrix W1 = W2 = W is a first-order Queen’s

contiguity matrix, i.e., all surrounding first-lag neighbours are equally affected. This leads to

an isotopic setting. Moreover, the locations are assumed to be on a two-dimensional square

grid D = {s ∈ Z2 : (0, 0)′ ≤ s ≤ (δ, δ)′}. We simulated the process for increasing dimensions

of the field δ ∈ {15, 20, 25} leading to increasing sample sizes of n ∈ {152, 202, 255}.

Firstly, we focus on the fractional integration parameter d and purely autoregressive

dependencies. That is, we set λ equal to zero. Secondly, we simulated a spARFIMA process

with λ = 0.5. The range parameter was between 0.5 and 2, namely d ∈ {0.8, 1, 1.5}. For

d = 1, the classical spatial autoregressive (with/without a moving average term) is obtained,

while for d = 0.5 the spatial autoregressive effect is diminished, leading to locally constraint

spillovers, and for d > 1, the range of the spillover effects is increased compared the SAR case.

We considered a medium and large spatial autoregressive dependence, namely ρ = 0.5 and

ρ = 0.9. The results of the simulations experiments in terms of the root mean square errors

(RMSE) and the average bias of the estimates can be found in Table 2 and 3 for the setting

without and with moving average dependencies, respectively. As expected, the MAE decreases

with the increasing size of the spatial fields, while the average bias fluctuates around zero for

all cases. Moreover, if the magnitude of the spatial dependence is increasing, the estimates of

both ρ and d are getting more precise. This can be seen by the decreasing RMSEs.

We also computed the average time needed to estimate the parameters using a standard R

implementation for all simulations. The eigenvalues of the weight matrix were computed using

the eigen function in R, and the optimisation of (12) was done numerically using the algorithm

implemented in solnp() (see Ghalanos and Theussl 2012). The computation time is shown in

Figure 3 for both simulation studies, i.e., with λ = 0 and λ = 0.5.

5 Real-world illustrative example

To illustrate the usefulness of the range parameter d in practice, we will examine a real-world

example below. For this reason, we consider a specific set-up, namely the identical data set,
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Figure 3: Average computation time for the estimation of the parameters (numerical maximi-

sation) for the case autoregressive model, λ = 0 (left), and the autoregressive moving average

model, λ = 0.5 (right)

but in three different resolutions. At the same time, we apply classical weighting matrices (i.e.,

Queen’s contiguity matrices) that weigh all neighbouring grid cells equally. Since the data

set does not change and the dependence structure (in a geographical sense) thus remains the

same, the shape of the spatial autocorrelation function changes for higher resolutions (because

the neighbouring raster cells are geographically closer). In the lowest resolution, the distance

between grid cells is greater in a geographical sense, and spatial dependence is, therefore, faster,

declining to zero (in terms of the number of spatial lags). Hence, the parameter d provides

additional flexibility for the shape and the range of the spatial dependence.

More precisely, we consider raster data on the aerosol optical depth obtained from NEO,

NASA Earth Observations, measured by NASA’s Moderate Resolution Imaging Spectrora-

diometer (MODIS). The aerosol optical thickness measures the concentration of solid and liquid

particles in the atmosphere, so-called aerosols. This aerosol concentration plays an important

role in weather, climate, air quality, and thus human’s health (cf. Kumar et al. 2007; Wang

and Christopher 2003; Gupta et al. 2013; Van Donkelaar et al. 2010). Moreover, these aerosols

are one of the greatest sources of uncertainty in climate modelling.

A climactic active and interesting area is the Northern Atlantic Ocean over the equator.
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Thus, we considered this area, N 0◦-25◦, E −45◦-20◦, which also covers the area of the most

Northern Atlantic hurricanes, in different resolutions of 0.5 × 0.5, 1 × 1, and 2 × 2 degrees.

This leads to quadratic lattices of sizes 12× 12, 25× 25, and 50× 50 for the highest, medium,

and lowest resolution, respectively. Hence, the sample size increases from n = 144, n = 625,

and n = 2, 500 observations. It is worth noting that this implies a 2, 500-dimensional weighting

matrix for the computationally largest problem. Because the focus is on the range of the spatial

dependence, we standardised each data set in advance.

The full data set is shown along with the subset of the three considered resolutions in

Figure 4. In addition to showing the data, we also provide the estimated spatial autocorrelation

functions based on Moran’s I in the bottom row of this figure. From these spatial ACFs,

one could see that the lower the resolution, the faster the spatial autocorrelation is decaying

– because the directly neighbouring pixels for the lowest resolution already cover a larger

geographical distance than the directly adjacent pixels for the highest resolution. Thus, the

fractional integration parameter d can provide further flexibility for the model, especially for

the larger ranges in higher resolutions. Moreover, one could see that the clusters appear more

pronounced with rather sharp edges for the images with a higher resolution compared to the

third case with a low resolution. In Table 4, we report the resulting estimated parameter along

with their estimated standard errors of a spatial ARFIMA model for all three resolutions.

The standard errors are obtained from the Hessian of log-likelihood as Cramer-Rao bounds.

Because the moving average component seems to be irrelevant (non-significant and leading to

lower AIC/BIC), all models have been estimated for λ = 0. As a benchmark model, we also

report the results of a classical spatial autoregressive model (i.e., d = 1). For the sake of

completeness, we also report the results of a SARMA model. At this point, it is worth noting

that one could also test for the difference of the parameter d to 1.

Looking at the information criteria reported in Table 4, we see that the fractional integra-

tion of the spatial autoregressive is particularly useful for medium and high resolutions. While

we are getting good model fits for a SAR process in the case of the lowest resolution, both the

AIC and BIC criteria are smaller for the spARFIMA process in the two other cases. Moreover,

we see that the autoregressive parameters are larger while the parameter d is smaller compared

to the low-resolution case. That is, there is a strong spatial dependence on the directly adjacent

pixels, which decays fast with the spatial distance. This leads to more pronounced and sharp

clusters compared to the low-resolution case, where the clusters rather fade out across space

16



Table 4: Estimated parameters of an spatial ARFIMA process (with λ = 0) and classical SAR

and SARMA models as benchmark.
spARFIMA SAR model SARMA model

Resolution Estimate Standard error Estimate Standard error Estimate Standard error

low 1.3178 0.4029

d medium 0.7656 0.0610 (d = 1) (d = 1)

high 0.6927 0.0271

low 0.8576 0.1228 0.9440 0.0275 0.9440 0.0373

ρ medium 0.9911 0.0090 0.9466 0.0126 0.9719 0.0119

high 0.9967 0.0025 0.9435 0.0066 0.9758 0.0054

low 0.0000 0.2102

λ medium (λ = 0) (λ = 0) 0.2526 0.0913

high 0.3275 0.0435

low 0.1654 0.0216 0.1637 0.0200 0.1637 0.0203

σ2
ε medium 0.1338 0.0077 0.1347 0.0085 0.1306 0.0076

high 0.1370 0.0040 0.1378 0.0040 0.1328 0.0039

low 189.1391 188.3013* 190.3013

AIC medium 660.91* 667.1188 662.5683

high 2620.552* 2677.81 2634.109

low 198.0485 194.2409* 199.2107

BIC medium 674.2232* 675.9943 675.8815

high 2638.024* 2689.462 2651.581

Residuals’ low 0.4076 0.4053 0.4053

standard medium 0.3661 0.3673 0.3617

deviation high 0.3702 0.3713 0.3644

Moran’s I of low 0.0003 (0.4346) 0.0331 (0.1822) 0.0331 (0.1822)

the residuals medium 0.0025 (0.4207) -0.0386 (0.9645) 0.0006 (0.4567)

(p-value) high 0.0053 (0.2867) -0.0509 (1.0000) 0.0008 (0.4535)

(because of the averaging of the grid cells). To a limited degree, the moving average residuals

could also capture this behaviour. Thus, the SARMA model shows a better fit compared to

the SAR model for medium and high resolution.

6 Discussion and Conclusions

Motivated by time-series fractionally integrated autoregressive models, we have introduced the

concept of fractional integration for spatial autoregressive processes. More precisely, we devel-

oped a spatial autoregressive fractionally integrated moving average model (spatial ARFIMA)

that is suitable for data observed in multidimensional space. Moreover, we do not restrict the

process to regularly spaced grid data so that the process can be applied to irregular polygon

data, as it is often the case in economics, but also to regular grids, like image, geostatistical,
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Figure 4: Optical aerosol depth (top: global data, middle: high, medium, and low resolution

from left to right, bottom: spatial ACF)
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or raster data. The latter examples are often present in environmental studies.

In contrast to time-series ARFIMA processes, fractional integration is directly included

in the spatial autoregressive term. Alternatively, two different spatial weight matrices could

be considered – one for the fractional integration and one for the autoregressive dependence.

In spatial settings, however, the choice of the weight matrix is complicated, and often it has a

prespecified structure, so it is preferable to combine these two effects into one term.

This new spatial ARFIMA model is closely related to SAR models, so many results can

be directly applied, e.g., on the identification or estimation. This paper considers the frequently

applied QML approach to estimate the parameters. We paid particular attention to the scala-

bility of this approach. Furthermore, we analysed the performance and the computation time

in a series of Monte-Carlo simulation studies.

Finally, the model has been applied to real data – aerosol optical depth. We focussed

on the interaction between the fractional integration and the spatial autoregressive parameter

because the same data was analysed in different resolutions. We found a pronounced spatial

dependence for all resolutions. The fractional integration parameter was particularly useful for

images in higher resolutions.
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