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Abstract

This paper derives a multivariate local Whittle estimator for the memory parameter of

a possibly long memory process and the fractional cointegration vector robust to low

frequency contaminations. This estimator as many other local Whittle based procedures

requires a priori knowledge of the cointegration rank. Since low frequency contamina-

tions bias inference on the cointegration rank, we also provide a robust estimator of

the cointegration rank. As both estimators are based on the trimmed periodogram we

further derive some insights in the behaviour of the periodogram of a process under

very general types of low frequency contaminations. An extensive Monte Carlo exercise

shows the applicability of our estimators in finite samples.

Our procedures are applied to realized betas of two American energy companies discov-

ering that the series are fractionally cointegrated. As the series exhibit low frequency

contaminations, standard procedures are unable to detect this relation.
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1 Introduction

It has been a well established fact that level shifts among many other so-called low-

frequency contaminations can be mistaken as long memory. Künsch (1986), Granger and

Ding (1996), Diebold and Inoue (2001) and Granger and Hyung (2004), among others,

show that various forms of low frequency contaminations such as deterministic breaks

and trends can cause spurious long memory. This leads to a bias of semiparametric

estimators for the memory parameter which mainly use these frequencies. This feature

has been used by Qu (2011) to test against spurious long memory.

However, the notion of spurious long memory is not restricted to the univariate case

but can as well be found in multivariate systems. An extension of the test by Qu

(2011) to the multivariate case relying on the same idea can be found in Sibbertsen

et al. (2018). This paper shows that working in a multivariate system can result in

efficiency gains and is therefore preferable where suitable. Multivariate local Whittle

estimation of the memory parameter has been considered in Shimotsu (2007). Robinson

(2008b) extends this to the case of possible fractional cointegration and simultaneously

estimates the cointegration vector. Two series are called fractionally cointegrated if they

have the same memory parameter and their linear combination has a reduced order of

integration (see among many others Nielsen (2007)). Neither of these two estimators is

robust against low frequency contaminations.

The aim of this paper is to provide such a robust multivariate local Whittle estimator of

the memory parameter and the fractional cointegration vector that remains consistent in

case of low frequency contaminations. Similar to the estimator of Robinson (2008b) our

proposed estimator requires a priori knowledge of the cointegration rank. This is because

local Whittle based methods need the inverse of the so-called G matrix of the spectral

density which becomes singular in the case of fractional cointegration. Christensen

and Santucci de Magistris (2010) and Kellard et al. (2015) discuss that in case of low

frequency contaminations inference on the fractional cointegration rank is likely to be

biased. For example, simultaneous breaks in the series can cause tests and estimators

to falsely indicate the series to be fractionally cointegrated.

We therefore additionally suggest a robust estimator of the cointegration rank. For this

purpose we investigate what we call spurious fractional cointegration further by gener-

alizing the definition of cobreaking in Hendry and Massmann (2007) to what we call

common low frequency contaminations. We show that low frequency contaminations

dominate the G matrix of the periodogram for frequencies close to the origin and there-

fore empirically effect among others local Whittle based procedures. Due to this domi-

nance of low frequency contaminations in the observed G matrix we find that common

low frequency contaminations spuriously indicate the presence of fractional cointegration

whereas distinct low frequency contaminations falsely indicate the absence of fractional

cointegration.

In order to obtain our estimators we use the idea of Iacone (2010) of trimming away the

contaminated frequencies. This idea is applied to provide a consistent estimator of the

- 1 -



cointegrating rank of the system by proposing a trimmed version of the procedure by

Robinson and Yajima (2002) as well as to construct a robust multivariate local Whittle

estimator for the memory parameter and the cointegrating vector. All of our approaches

are spectral based and therefore semiparametric. To keep notation sparse we concentrate

on the bivariate case although an extension to higher dimensions is straightforward. As

our estimators rely on properties of the periodogram of processes with low frequency

contaminations we find it useful to additionally provide some deeper understanding of

the behaviour of the periodogram in this situation.

The paper is structured as follows. First, we provide some results for the periodogram of

a contaminated process in a rather general framework of low frequency contaminations

generalizing previously obtained results in Section 2. Section 3 formally defines com-

mon low frequency contaminations and contains our robust procedure to estimate the

cointegration rank while Section 4 has the robust multivariate local Whittle estimator.

Section 5 contains some Monte Carlo and Section 6 an empirical example. Section 7

concludes. All the proofs are gathered in the appendix.

2 The Periodogram of Spurious Long Memory Processes

In this section we obtain some properties of the periodogram for a very general class

of low frequency contaminations which are partwise needed later but are also of an

interest on its own. We therefore discuss it in more detail then necessary for our robust

estimators and see this as an additional contribution of the paper. Although the focus

of this paper is on multivariate estimation, we derive the results in this section in a

univariate setup to avoid notational complexity. We will later assume the trend process

to be independent from the noise process which means that an extension of the results to

a multivariate framework is straightforward. It further implies that effects of additional

noise components are irrelevant for the mean process so that we are only concerned with

the behaviour of the pseudo-periodogram of a time-varying mean process in this section.

For the mean process we use a very general specification allowing for deterministic mean

shifts, smooth deterministic trends and random level shifts with rare shift asymptotics

as well as random level shifts with medium rare shifts where the number of shifts tend

to infinity with sample size but with a slower rate. This model embeds many of the

processes discussed in the literature to generate spurious long memory such as the frac-

tional trend of Bhattacharya et al. (1983) or the STOPBREAK model of Engle and

Smith (1999) among many others.

The mean process that can be either deterministic or stochastic is represented by

µt = µ0 +
K

∑
k=1

∆µk1(t ≥ Tk), (1)

or
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µt = µ0 +
K

∑
k=0

µk1(Tk−1 ≤ t < Tk). (2)

Here, K is either a fixed number or a random variable giving the number of breaks,

T is the length of the series, 1 corresponds to the indicator function, Tk denotes the

breakpoint, and µ0 = µ1−1/T ∑
T
t=1 µt .

The expression in Equation (1) is a suitable representation of the mean for processes

which have a nonstationary nature. Examples include deterministic trends or mean

shifts as well as nonstationary random level shift models or the STOPBREAK model.

The model is accumulative in the sense that the break at time t depends on all shifts that

occurred before t. It also nests a random walk. The model in (2) on the other hand has

a stationary character and seems appropriate for models such as the Markov-Switching

model or stationary random level shift models. It has a non-cumulative structure and

nests the White Noise.

In the following we denote by Iz(λ j) = wz(λ j)w∗z (λ j) the periodogram of the series zt at

frequency λ j. Here, wz(λ j) = 1√
2πT ∑

T
t=1 zteiλ jt is the Fourier transform of the series zt and

the asterix denotes complex conjugation. Iµ(λ j) is then the pseudo-periodogram of the

mean process. We focus on the behaviour of this pseudo-periodogram at the Fourier

frequencies λ j = 2π j
T for λ j→ 0+.

We now derive the properties of the induced periodogram of the process (1) and (2).

Let us first consider the case of a smooth trend h(s,T ) and assume:

Assumption A1. |h(s,T )|,
∣∣∣ ∂h(s,T )

∂s

∣∣∣< ∞, for s ∈ [0,1].

We have the following Lemma:

Lemma 1. If µt = h(t/T,T ), under Assumption A1 we have

Iµ(λ j)∼
T

8π3 j2

{[∫ 1

0

∂h(s,T )

∂s
sin(2π js)ds

]2

+

[∫ 1

0

∂h(s,T )

∂s
(1− cos(2π js))ds

]2
}
.

Since the integrals in Lemma 1 are functions of j (and possibly T ), it can be seen

that the exact rate of the periodogram Iµ(λ j) depends on the derivative of the trend

function. Therefore, if the trend function is known and the integrals have a closed form

solution, it is possible to determine the exact order. If this is not the case, we can still

recover the upper bound on the rate of decay for increasing j that was established by

Künsch (1986), Qu (2011), and Iacone (2010). To see this, note that sin(2π js)≤ 1 and

1− cos(2π js)≤ 2 for all j and s. It therefore follows immediately for µt = h(s,T ) = h(s)

that the periodogram is Iµ(λ j) = O(T j−2).

We now turn to the behavior of the periodogram of abrupt level-shift processes. To

simplify the exposition, let ζk denote either ∆µk or µk, depending on whether the accu-

mulative structural-change model (1) or the non-accumulative model (2) is considered.
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To characterize the behavior of different groups of processes, we require different groups

of assumptions. First, in the case of deterministic structural breaks, we assume:

Assumption A2. |ζk| < ∞ and the δk = Tk/T are deterministic with 0 < δk < 1, for

k = 1, ...,K < ∞.

For stochastic level shifts we require the following assumptions.

Assumption A3. E[ζk] = 0 and Var[ζk] = σ2
∆
T−β, for some 0≤ β≤ 1 and 0 < σ2

∆
< ∞.

Assumption A4. P(t ∈ {T1, ...,TK}) = pt , where 0 ≤ pt ≤ 1, and E[pt ] = p̃T−α, for

some 0 ≤ α ≤ 1. Furthermore, the dependence in pt is limited such that E[K] = p̃T 1−α,

E
[
((Tk−Tk−1)/T )2

]
= 2D̃

p̃2 T 2(α−1), and E
[
((Tk−Tk−1)/T )4

]
= O(T 4(α−1)), for some 0 <

p̃, D̃ < ∞.

Assumption A5. pt is independent of ζk for all k = 1, ...,K and t = 1, ...,T . Additionally,

∑
∞
τ=1 |E[ζkζk−τ]|= Var[ζk]C̃, for k = 1,2, ..., and 0≤ C̃ < ∞.

The rate T−β in Assumption A3 is required to nest a number of mean-change processes

from the literature, such as the STOPBREAK process of Engle and Smith (1999). For

other processes setting β = 0 gives the familiar setup with non-degenerate breaks.

Assumption A4 imposes a structure on the nature of the mean change process. The

nature of the dependence in pt is restricted by the additional requirement that the

expected squared length of the kth regime expressed as a fraction of the sample is
2D̃
p̃2 T 2(α−1), which means that the second moment of the regime lengths is still of the

same order as that of a geometric distribution. In this context, the constant D̃ depends

on the dependence in pt , and it is equal to one, if pt = p for all t = 1, ...,T .

Since there are T observations in the sample, the expected number of mean shifts in

the series is E[K] = p̃T 1−α. The parameter α controls the asymptotic frequency of level

changes. The expected number of shifts remains constant for α = 1, whereas it goes

to infinity for α < 1. The first case (α = 1) is referred to as rare shifts asymptotics

or low-frequency contaminations. We refer to the second case (α < 1) as intermediate-

frequency contaminations. Here, we have K→ ∞ but K/T → 0, as T → ∞. That means

we asymptotically have an infinite number of shifts, but also an infinite number of

observations between shifts. Finally, for α > 1 shifts are so rare that we will no longer

observe any in a sample, asymptotically.

Even though it may seem unusual to tie the properties of the process to the sample size,

this is a common approach in the related literature. Guégan (2005) refers to this practice

as a thought experiment. The validity of this approach depends on the purpose of the

analysis. Obviously, it is unreasonable to assume that structural changes will become

less common in the future if the objective is to forecast a time series. On the other hand,

if the objective is statistical inference based on a given sample, we argue that assuming

that the frequency of structural change is tied to the sample size T can be thought of as

an asymptotic framework that is better suited to approximate the statistical properties

of the quantities of interest than keeping p fixed. The latter would imply, for example,
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that level changes are so frequent that the mean between two shifts cannot be estimated

consistently.

Finally, we require some bound on the degree of dependence between the means or mean

changes ζk in consecutive segments. This is imposed by Assumption A5 according to

which the autocovariance function of the ζk has to be absolutely summable. We then

obtain the following result.

Lemma 2. Denote by κ > 0 a finite constant and by |κT | ≤ 1 a sequence of constants.

Then, for j/T → 0 and level-shift processes characterized by (1),

i.) Iµ(λ j)∼ T
4π3 j2 κ, under Assumption A2.

ii.) E [Iµ(λ j)] ∼
σ2

∆
p̃T 2−α−β

4π3 j2

(
1 + κTC̃

)
, for α ≤ 1, and under Assumptions A3, A4, and

A5.

Lemma 2 establishes the properties of the periodogram of the accumulative mean-change

process in (1). The first case i.) derives the growth rate of the peak near the origin and

the rate of decay for frequencies further away from the zero frequency for a determin-

istic structural break process. This order was previously established by McCloskey and

Perron (2013). Interesting is the contrast to case ii.), where rare random level shifts are

considered. In contrast to i.), the periodogram becomes stochastic instead of determin-

istic. Furthermore, the scaling factor T−β influences the scaling of the peak local to the

origin, which is of order T 1−β instead of T . In i.) the periodogram is a deterministic

function. In ii.) there is a well defined expectation and the process is not ergodic for

α = 1, the expected number of shifts in the sample is always given by E[K] = p̃. The case

of α < 1, on the other hand, covers intermediate frequency contaminations, so that the

expected number of shifts is E[K] = p̃T 1−α and the process is ergodic. In this situation,

the scaling of the peak near the origin is determined by both – α and β. Since α < 1,

the growth rate is always faster than that in case i.) and for α = 1. The rate of decay

for increasing j, however, is the same for all three types of processes.

Similar results to these can be obtained for the non-accumulative mean-change process

in (2).

Lemma 3. Denote by κ′ > 0, |κ′T | ≤ 1, and κ′P,T , a finite constant, a sequence of con-

stants, and a sequence of positive valued random variables with constant expectation and

finite variance, respectively. Then, for j/T → 0 and level-shift processes characterized

by (2),

i.) Iµ(λ j)∼ T
2π3 j2 κ′, under Assumption A2.

ii.) Iµ(λ j)∼
σ2

∆
p̃T 1−β

2π3 j2 κ′P,T , for α = 1, and under Assumptions A3 and A4.

iii.) E [Iµ(λ j)] ∼
σ2

∆
D̃

πp̃ T α−β
(
1 + κ′TC̃

)
, for α < 1, and under Assumptions A3, A4, and

A5.
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Figure 1: Average rescaled periodogram for accumulative and non-accumulative processes with
intermediate frequency contaminations. In the left plot the simulated DGP is µt = µt−1 +πtηt and
in the right plot it is µt = (1−πt)µt−1 +πtηt . In both cases πt ∼ B(p), p = 5/T α, and ηt ∼ N(0,1).

As one can see, the orders for cases i.) and ii.) in Lemma 3 are identical to those in

Lemma 2. This means that accumulative and non-accumulative structural change have

the same impact on the periodogram local to zero, as long as the mean changes are

deterministic or rare. In contrast to that, the case α < 1 is remarkably different and

needs to be treated separately. In presence of intermediate frequency contaminations,

when the process becomes ergodic, the order of the peak is reduced to T α−β, instead

of T 2−α−β. Furthermore, the peak local to zero no longer decays for increasing j. This

is a behaviour similar to a white noise reflecting the stationary structure of the non-

accumulative approach.

Important special cases of both the accumulative and the non-accumulative process are

obtained for α = 0. In this case the accumulative process boils down to a unit root

process and the non-accumulative process becomes a simple stationary short memory

process. In this situation, case ii.) in Lemma 2 and iii.) in Lemma 3 reduces to the

well known result that the periodogram of the unit root process local to the origin is of

order OP(T 2/ j2) and that of the short memory process is OP(1).

The precision of the statements in case iii.) of Lemmas 2 and 3 in finite samples is inves-

tigated in a small Monte Carlo study. The results are shown in Figure 1. As examples for

accumulative and non-accumulative structural-change processes with intermediate fre-

quency contaminations, we simulate the random level-shift process µt = µt−1 + πtηt and

its stationary counterpart µt = (1−πt)µt−1 + πtηt . In both cases πt ∼ B(p), p = 5/T α,

and ηt
iid∼ N(0,1).

To analyze the accuracy of the asymptotic approximations in Lemmas 2 and 3, we

calculate the average periodogram from 5,000 realizations of the respective process for

different sample sizes and standardize it with the rate implied by the theorems. The

resulting rescaled averaged periodogram is expected to be flat, if the theorem applies.

Since the results are obtained under the assumption that j/T → 0, it can be expected

that the accuracy of the approximation is decreasing in j. On the left-hand side of Figure

1, it can be seen that the asymptotic approximation for accumulative structural-change
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processes in Lemma 2 ii.) with α < 1 is precise for small as well as for larger samples.

On the other hand, the plot on the right-hand side of Figure 1 shows that the results in

Lemma 3 for non-accumulative structural-change processes hold up well in finite samples

for α = 0.3, but the approximation seems to be much more imprecise for α = 0.7.

The explanation for this effect can be seen from (19) in the proof of Lemma 3, where

the first term of order O(T α−β) is the dominating one that drives the asymptotic result,

but there is an approximation error of order O(T−2+3α−β), whose impact vanishes only

slowly if α is relatively large.

Nevertheless, it can be seen that the average rescaled periodogram converges to its

predicted value as T increases.

3 Robust Fractional Cointegration Rank Estimator

In this section we first provide evidence that existing semiparametric estimators and tests

for the fractional cointegration rank are biased in case of low frequency contaminations.

We then derive our robust fractional cointegration rank estimator as an extension of the

rank estimator by Robinson and Yajima (2002).

Point of departure is a vector valued long memory process yt with low frequency contam-

inations. For expositional simplicity we focus on a bivariate system, i.e. yt = (yat ,ybt)
′
,

extensions to higher dimensions are straightforward. The process under investigation is

yt = xt + µt , (3)

where µt = (µat ,µbt)
′

is a bivariate low frequency contamination process that is indepen-

dent of xt and where for µat and µbt either of the Assumptions A1, A2, or A3 with β = 0

holds. Moreover, xt = (xat ,xbt)
′
is a bivariate long memory process whose spectral density

matrix f (λ j) at frequency λ j fulfills

f (λ j)∼ Λ j(d)GxΛ
∗
j(d), (4)

where Λ j(d) = diag(λ
−da
j ei(π−λ j)da/2,λ−db

j ei(π−λ j)db/2) with i =
√
−1 and d = (da,db) are the

memory parameters. Further, A ∼ B denotes that A/B→ 1, as λ→ 0+ and A∗ denotes

the complex conjugate of A.

As shown in Marinucci and Robinson (2001), the matrix Gx is positive definite if and only

if xt is not (fractionally) cointegrated and it becomes singular otherwise. Consequently,

by estimating the rank of the Gx matrix we can investigate whether the time series are

(fractionally) cointegrated as suggested by Robinson and Yajima (2002). However, if

instead of the pure memory process we observe a contaminated process such as (3), then

our estimate of the rank will be based on Gy which comprises the influence of Gx and

Gµ.

To illustrate this, note that the periodogram as an estimate of Gy is given by Iy(λ j) =

Iµ(λ j)+ Ix(λ j)+ Iµx(λ j)+ Ixµ(λ j), where Iµx(λ j) = wµ(λ j)w∗x(λ j) and Ixµ(λ j) = wx(λ j)w∗µ(λ j)
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are the cross-periodograms of µt and xt , so that E[Iy(λ j)] = E[Iµ(λ j)]+ E[Ix(λ j)] if xt and

µt are assumed to be independent.

For the long memory component it holds that E[Ix(λ j)] =
(

T
j

)2max{da,db}
Gx as j/T → 0.

The properties of E[Iµ(λ j)] can be derived based on our results presented in Section

2. Here we are interested in the empirically relevant situations of a smooth trend, a

deterministic break or a random level shift process with rare shifts. These low frequency

contaminations can be distinct, i.e. each series faces different contaminations, or they can

be common as discussed in Hendry and Massmann (2007). Their definition is limited

to contemporaneous mean cobreaking, i.e. common deterministic structural changes.

Furthermore, their definition refers to changes relative to some initial parametrization,

so that processes with a stable monotonous trend for example are not included. We

therefore propose the following slightly modified definition:

Definition 1 (CLFC). The bivariate process yt in (3) has common low frequency com-

ponents if there exists a 2×1 matrix Φ 6= 021 , such that Φ′ (µt −µ1) = 0 for all t = 1, ...,T .

Now we are able to derive the order of the expected pseudo-periodogram of the trend

process.

Theorem 1. Suppose yt is generated by (3) and j/T → 0 we have

E[Iµ(λ j)] =
T
j2 Gµ,

and Gµ has rank 1 if and only if µt is a common low frequency component according to

Definition 1.

It is obvious from the rate in the theorem that the Gµ matrix dominates the Gy matrix

for low frequencies while the Gx matrix is the dominating one for higher frequencies.

If we now observe time series which are not fractionally cointegrated but exhibit joint

breaks, then the estimator by Robinson and Yajima (2002) might spuriously identify a

fractional cointegration relation since the Gµ matrix is singular. On the other hand, if

we observe fractionally cointegrated time series which exhibit distinct breaks, then the

same estimator might wrongly identify no fractional cointegration relation since the Gµ

matrix has full rank. These problems do not only arise for the estimator by Robinson

and Yajima (2002) but for all existing semiparametric estimators and tests concerning

the fractional cointegration relation since all of them use the Gy matrix in some form.

We will demonstrate this by simulations in Section 5. It should further be noted that

testing the homogeneity of fractional difference parameters as suggested by Robinson

and Yajima (2002) is also not possible in the case of low frequency contaminations. This

is due to two reasons. First, the estimates of the memory parameter will be biased when

using the standard local Whittle estimator. This issue can be overcome by considering

a robust estimator such as those by Iacone (2010), McCloskey and Perron (2013) or

Hou and Perron (2014). However, the test statistics also includes an estimate of the Gx

matrix which is based on the first m1 frequencies. In the case of joint breaks this matrix
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might be estimated to be singular letting the statistics converge to zero no matter if the

order of integrations are truly equal.

Let us now introduce an approach to estimate the Gx matrix consistently also in the

case of low frequency contaminations. We know from Theorem 1 that the Gµ matrix

only dominates for the low frequencies. If we trim these away then we can estimate the

rank of the Gx matrix without distortions no matter if low frequency contaminations

are present or not. We first show that the estimated Gy matrix trimmed by the first

frequencies converges to the estimated Gx matrix. For this purpose we need to introduce

the following assumptions.

Assumption B1. It holds that

xt −E[xt ] = A(L)εt =
∞

∑
j=0

A jεt− j,

with ∑
∞
j=0 ‖A j‖2 <∞ and ‖·‖ denotes the supremum norm. It is assumed that E[εt |Ft−1] =

0, E[εtε
′
t |Ft−1] = Iq a.s. for t = 0,±1,±2, . . . where Ft denotes the σ-field generated by εs

and Iq is an identity matrix, s≤ t. Furthermore, there exists a scalar random variable ε

such that E[ε2] < ∞ and for all τ > 0 and some C > 0 it is P(‖εt‖2 > τ)≤CP(ε2 > τ).

Assumption B2. As T → ∞,

l
m1

+
m1

T
→ 0,

where l is a trimming parameter with l = max(1, [clT δl ]) and m1 = max(l +1, [cm1T δm1 ]) is

the bandwidth parameter with 0≤ δl < δm1 < 1 and cl,cm1 ∈ (0,∞).

Let us further assume for the moment that the order of integration is known and denote

Ĝy(d, l,m1) = (m1− l + 1)−1
m1

∑
j=l

Λ j(d)Iy(λ j)Λ
∗
j(d)

= (m1− l + 1)−1
m1

∑
j=l

Λ j(d)Ix(λ j)Λ
∗
j(d)+(m1− l + 1)−1

m1

∑
j=l

Λ j(d)Iµ(λ j)Λ
∗
j(d)

+(m1− l + 1)−1
m1

∑
j=l

Λ j(d)Ixµ(λ j)Λ
∗
j(d)+(m1− l + 1)−1

m1

∑
j=l

Λ j(d)Iµx(λ j)Λ
∗
j(d)

and Ĝx(d, l,m1) = (m1− l + 1)−1
m1

∑
j=l

Λ j(d)Ix(λ j)Λ
∗
j(d).

Theorem 2. Suppose yt is generated by (3) and Assumptions B1 and B2 hold, using

m1 = T δm1 and l = T δl for some 0≤ δl < δm1 < 1, and for T → ∞,

Ĝy(d, l,m1)
p→ Ĝx(d,1,m1),

if either

i.) l = 1 and d0
a + d0

b > 1, or l = 1, d0
a + d0

b < 1, and δm1 > 1−d0
a −d0

b .

- 9 -



ii.) d0
a + d0

b < 1, l = O
(

T (d0
a+d0

b−1)/(d0
a+d0

b−2)+υ

)
for some υ > 0, and (d0

a + d0
b −1)/(d0

a +

d0
b −2)+ υ < ((da−d0

a)+(db−d0
b)+ δm1)/((da−d0

a)+(db−d0
b)+ 1).

Here and in the rest of the paper the superscript 0 denotes the true value of a parameter,

for example d0
a is the true memory parameter of series a.

The first part of the theorem shows that for nonstationary long memory processes the

long memory component always dominates the mean component and no trimming is

needed. Here, we can use the procedure by Nielsen and Shimotsu (2007) to determine

the fractional cointegration rank even when low frequency contaminations are present. In

the case of stationary long memory, however, this is not the case. Here, the second part

of the condition gives the frequency from which onwards the long memory component

becomes dominant. This depends on the true order of integration which we assumed to

be known so far. If this is not the case a feasible choice would be to trim away l =
√

T

frequencies. We could also estimate d using univariate approaches that are robust to

low frequency contaminations and then choose l based on these estimates. However,

unreported simulations indicate that setting l =
√

T yields superior results.

Nevertheless, we still have to estimate d for determining Ĝy(d, l,m1). For this purpose,

we need an estimator that is robust to low frequency contaminations and converges with

a rate of logm which is the standard rate for semiparametric estimators. Moreover, as

discussed in Robinson and Yajima (2002) and Nielsen and Shimotsu (2007) we cannot

rely on multivariate estimators since these require knowledge of the cointegration rank

and we require an estimate of d that converges faster than the estimate of G such that

the effect of estimating d vanishes asymptotically. Possible estimators are those of Iacone

(2010), McCloskey and Perron (2013) or Hou and Perron (2014). Denote the bandwidth

for estimating d by m for which the following assumption holds.

Assumption B3. For any ψ > 0

m1/2−ψ

1 T ψ

m1/2 +
m1+2ψlog(m)2

T 2ψ
→ 0, as T → ∞.

Theorem 3. Suppose yt is generated by (3) and Assumptions B1 to B3 hold and let

d̂(m)−d0 = o(logm), then

Ĝy(d̂(m), l,m1)
p→ Ĝy(d0, l,m1).

Theorem 3 in conjunction with 2 ii.) and Proposition 3 of Robinson and Yajima (2002)

implies that G can be estimated consistently and Ĝy(d̂(m), l,m1) is asymptotically Gaus-

sian given the additional assumptions made in Robinson and Yajima (2002). Note

that these assumptions restrict the series to be stationary. This might seem restrictive

but as discussed before for nonstationary series low frequency contaminations are not

troublesome such that the standard extension by Nielsen and Shimotsu (2007) can be

considered.
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We can then follow the route of Robinson and Yajima (2002) to estimate the fractional

cointegration rank of the series. For the sake of completeness we will briefly outline the

steps.

We can test whether two series have equal memory using

T̂T RE =
m1/2(d̂a− d̂b)

(1/2(1− Ĝ2
ab/(ĜaaĜab)))1/2 + n(T )

,

where Gab are the respective elements of the estimated matrix Ĝy(d̂(m), l,m1), da and db

are estimated using a robust estimator as discussed above, and n(T ) > 0. Consistency

of the test follows under the same additional assumptions as in Robinson and Yajima

(2002).

If the test indicates the two series to have equal memory we can then determine whether

they are fractionally cointegrated by estimating the fractional cointegration rank. To

do so denote by q1,G the first eigenvalue of Gy(d̂(m), l,m1) and let q̂1,G denote its em-

pirical counterpart. If rank(A) = 2 we have q1,A > q2,A > 0 whereas for rank(A) =

1 it is q1,A > q2,A = 0. Define furthermore σv,G = ∑
v
i=1 qi,G and N(T ) > 0 such that

N(T ) + m−1/2
1 N(T )−1 → 0 as T → ∞ we can estimate the fractional cointegration rank

by minimizing the loss function

L(u) = N(T )(2−u)− σ̂2−u,G.

The estimator for the fractional cointegration rank is

r̂gT RE = argminu=0,1L(u).

Again, consistency of this estimator follows directly from Robinson and Yajima (2002)

given the same additional assumptions.

4 Robust Multivariate Local Whittle Estimator

After determining the fractional cointegration rank we aim to estimate the cointegration

vector and the memory parameter robust to possible low frequency contamination. In

this section we obtain a robust local Whittle estimator for the parameter θ containing

of the memory parameters d = (da,db) and the possible cointegration vector β.

It should be mentioned that our robust local Whittle estimator depends on the a priori

specified fractional cointegration rank as much as the original local Whittle estimator

in Robinson (2008a). The cointegration rank is needed to know the dimension of the

parameter to be estimated. It does not enter the estimation procedure as a nuisance

parameter. Therefore, we see the estimation of the cointegration rank in a first step

as part of the model specification procedure and find the assumption of a known coin-

tegration rank when it comes to parameter estimation justified. The same assumption

is implicitly used by Robinson (2008a) and Shimotsu (2012) and is therefore standard
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in the literature. A short Monte Carlo analysis underpinning this can be found in the

Online Appendix.

The expectation of the periodogram of the contaminated multivariate long memory

process has an additive structure. Consequently, a robust multivariate local Whittle

estimator can be constructed in a similar fashion as for the fractional cointegration

rank estimator, i.e. by trimming away the frequencies dominated by the low frequency

contamination. Our estimator is then based on the univariate trimmed local Whittle

estimator by Iacone (2010). In Section 2 we showed that OP(T j−2) is an upper bound for

the pole of the periodogram at the zero frequency for a fairly general class of processes.

Therefore, trimming the periodogram by the first l =
√

T frequencies eliminates the

influence of the low frequency contaminations and leads to a robust estimate of the

memory parameter.

We aim to estimate the parameter θ = (d,β)
′
, where we restrict the series to be station-

ary, i.e. −1/2 < da,db < 1/2. As discussed in Section 3, for nonstationary time series

trimming is not needed. Our trimmed multivariate local Whittle estimator is defined

by the objective function using here and in what follows the superscript tri to indicate

the trimmed version

R(θ) = logdetΩ̂
tri(θ)−2(da + db)

1
m− l + 1

m

∑
j=l

logλ j

with

Ω
tri(θ) =

1
m− l + 1

m

∑
j=l

Re[Λ j(d)BItri
y (λ j)B

′
Λ
∗
j(d)]

and

B =

 1 −β

0 1

 .

It is

θ̂ = argminR(θ).

To show consistency of this estimator we need to make the following assumptions.

Assumption C1. As λ→ 0+

fx,ab(λ) = exp
(
iπ
(
d0

a −d0
b
)
/2
)

λ
−d0

a−d0
b G0

x,ab = O
(

λ
−d0

a−d0
b

)
,

where fx,ab and Gx,ab are the respective element of the matrices fx and Gx of xt .

Assumption C2. Assumption B1 holds.

Assumption C3. In a neighborhood (0,α) of the origin, A(λ) = ∑
∞
j=0 A jei jλ is differen-

tiable and
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∂

∂λ
aA(λ) = O

(
λ
−1‖aA(λ)‖

)
, λ→ 0+,

where aA(λ) is the a-th row of A(λ).

Assumption C4. As T → ∞,

l
m

+
m
T
→ 0,

where l is a trimming parameter with l = max(1, [clT δl ]) and m = max(l + 1, [cmT δm ]) is

the bandwidth parameter with 0≤ δl < δm < 1 and cl,cm ∈ (0,∞).

Assumptions C1, C2, and C3 are analogous to Assumptions A1 to A3 of Lobato (1999)

respectively Assumptions 1 to 3 of Shimotsu (2007) and Assumption C4 corresponds to

A4 of Shimotsu (2007). We furthermore denote in what follows ν0 = d0
b −d0

a .

Theorem 4. Suppose yt is generated by (3) and Assumptions C1 to C4 hold with the

trimming parameter l =
√

T it is

d̂−d0 P→ 0, β̂ = β
0 + oP

((m
T

)ν0)
.

As usual, the assumptions required to prove the normality of the estimator are somewhat

stronger than those needed for consistency. Here, we assume

Assumption D1. For ζ ∈ (0,2] as λ→ 0+

fx,ab(λ) = exp
(
i(π−λ)

(
d0

a −d0
b
)
/2
)

λ
−d0

a−d0
b G0

x,ab = O
(

λ
−d0

a−d0
b+ζ

)
.

Assumption D2. Assumption B1 holds and in addition, it holds for a,b,c,d = 1,2,

t = 0,±1,±2, . . . that

E(εatεbtεct |Ft−1) = µabc a.s.

and

E(εatεbtεctεdt |Ft−1) = µabcd a.s.,

where |µabc|< ∞ and |µabcd |< ∞.

Assumption D3. Assumption C3 holds.

Assumption D4. As T → ∞ it holds for any τ > 0

l
m

+
m1+2τ(logm)2

T 2τ
+

logT
mτ
→ 0.

Assumption D5. There exists a finite real matrix Q such that

Λ j(d0)−1A(λ j) = Q + o(1), λ j→ 0.
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These assumptions allow for non-Gaussianity. Assumption D1 and D5 are satisfied by

multivariate ARFIMA processes. Assumption D4 is necessary for the Hessian of the

objective function of the local Whittle function to converge. It should be mentioned

that Assumption D4 gives a sharp upper bound for the number of frequencies m which

can be used for the local Whittle estimator. It is m = o(T 0.8).

For the estimator we obtain the following results.

Theorem 5. Suppose yt is generated by (3) and Assumptions D1 to D5 hold with T →∞

and ∆T = diag(λ−ν0

m ,1,1), then

√
m∆T (θ̂−θ

0)
d→ N(0,Ξ−1)

with Ξaa = 2µ̃[(1−2ν0)−1−(1−ν0)−2cos2(γ̃0)]Gbb/Gaa, Ξab = Ξ21 =−2µ̃ν0(1−ν0)−2cos(γ̃0)

Gab/Gaa +(π/2)2µ̃(1−ν0)−1sin(γ̃0)(Gab/Gaa), Ξ13 = Ξ31 =−Ξab, Ξbb = Ξ33 = 4 +(π2/4−
1)2µ̃ρ2, ρ = Gab/(GaaGbb)1/2, µ̃ = (1−ρ2)−1 and γ̃0 = (π/2)ν0.

Consequently, the estimator is consistent and asymptotically normal with the same

limiting variance as the GSE estimator in Robinson (2008b). We can therefore robustify

the estimator without an asymptotic loss in efficiency. If Gµ = 0, the estimator is reduced

to the standard multivariate estimator of Robinson (2008b).

5 Monte Carlo

In this section we show the behavior of our proposed methods in finite samples by means

of a simulation study. We first investigate the behaviour of our robust fractional coin-

tegration rank estimator and then consider the robust local Whittle estimator. Our

framework as stated in Section 2 allows for various forms of low frequency contamina-

tions. For the ease of the presentation we present results for nonstationary random level

shift processes with rare shifts in the following as this seems to be the empirical most

relevant case and move the qualitatively similar results for stationary random level shift

processes and deterministic trends to Tables OA.1-OA.6 in the Online Appendix.

The bivariate stationary long memory process with random level shifts considered in the

following can be delineated as

yat = ζaµt + ξµ̃t + xt +(1−L)−(d−d̃)ut (5)

ybt = ζbµt + xt , (6)

with

µt = µt−1 + πtηt , πt ∼ B(5/T ), ηt ∼ N(0,1), (7)

µ̃t = µ̃t−1 + π̃t η̃t , π̃t ∼ B(5/T ), η̃t ∼ N(0,1), and (8)

xt = (1−L)−det ,

et

ut

∼ N

0,

1 r

r 1

 . (9)
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Here, L is the usual lag operator such that (1− L)d = ∑
∞
k=0
(d

k

)
(−1)kLk, with

(d
k

)
=

d(d−1)(d−2)...(d−(k−1))
k! . This model allows for fractional cointegration, distinct structural

breaks and joint structural breaks.

We present results for orders of integration of d = 0.2,0.4. Concerning the fractional

cointegration component, we investigate the case of no fractional cointegration with

d̃ = 0 and the case of fractional cointegration with d̃ = d and the cointegrating vector

being β = (1,−1)
′
.

Concerning the low frequency contamination component, we investigate the situations

of no low frequency contaminations, i.e. ζa = ζb = ξ = 0, of distinct structural breaks, i.e.

ζa = 0 but ζb = ξ = 1, and of joint breaks with ζa = ζb = 1 and ξ = 0, i.e. the cobreaking

vector is given by γ = (1,−1)
′
. Break sizes are random with mean zero and variance one

and they occur with probability 5/T . This means that on average there are five breaks

in the sample.

We further present results for series whose errors are cross-sectionally uncorrelated (r =

0) and for series whose errors are cross-sectionally correlated with r = 0.5. Finally, we

consider sample sizes of T = 250,1000 and all presented results are the averages over

5,000 replications.

5.1 Fractional Cointegration

We first consider the results for the estimation of the fractional cointegration rank. To

put the performance of our estimator into perspective and to validate our claim in Section

3 that all existing procedures to identify fractional cointegration are seriously distorted

for processes with low frequency contaminations, we also consider the performance of

all other procedures applicable when the series exhibit stationary long memory. This

includes the fractional cointegration rank estimator by Robinson and Yajima (2002)

(RY02) and the fractional cointegration tests by Chen and Hurvich (2006) (CH06),

Robinson (2008a) (R08), and Souza et al. (2018) (SRF). Parameter values are all chosen

according to the authors recommendation. Note that R08 requires r > 0 so that we do

not report results for r = 0

For our robust estimator, abbreviated TRE in the table, we need to choose l,m,m1,N, and

the type of robust univariate estimator. Unreported simulations indicated that l = T 0.5,

m = T 0.75, m1 = T 0.7,N = m−0.2, and the univariate estimator by Iacone (2010) yielded

the best trade-off between correctly and spuriously identifying fractional cointegration

in our simulations. We therefore show the results for this parameter combination in the

following and recommend it to be considered in empirical applications.

The results can be found in Table 1. In the table ”NO” indicates no low frequency

contaminations, ”DIS” means that the series exhibit distinct breaks, and ”COB” refers

to joint breaks. Furthermore, ”TRUE” means that the series are fractionally cointe-

grated whereas ”FALSE” indicates that they are not. We then state the mean estimated

cointegration rank for the rank estimators, which should be 1 for ”TRUE” and 0 other-

wise, and the mean rejection rate for the tests, which should be 1 for ”TRUE” and 0.05
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cointegration TRUE FALSE

r d T breaks TRE RY02 CH06 R08 SRF TRE RY02 CH06 R08 SRF

0

0.2

250

NO 1.00 0.99 0.29 - 0.09 0.00 0.00 0.16 - 0.00

DIS 0.96 0.35 0.24 - 0.10 0.00 0.00 0.51 - 0.16

COB 1.00 1.00 0.81 - 0.66 0.00 0.02 0.75 - 0.37

1000

NO 1.00 1.00 0.63 - 0.29 0.00 0.00 0.18 - 0.00

DIS 0.99 0.23 0.44 - 0.54 0.00 0.00 0.63 - 0.61

COB 1.00 1.00 0.97 - 0.92 0.00 0.00 0.90 - 0.72

0.4

250

NO 1.00 1.00 0.80 - 0.39 0.00 0.00 0.23 - 0.00

DIS 0.98 0.68 0.18 - 0.10 0.00 0.00 0.38 - 0.04

COB 1.00 1.00 0.93 - 0.71 0.00 0.00 0.52 - 0.10

1000

NO 1.00 1.00 1.00 - 0.90 0.00 0.00 0.19 - 0.01

DIS 1.00 0.78 0.22 - 0.42 0.00 0.00 0.41 - 0.13

COB 1.00 1.00 1.00 - 0.98 0.00 0.00 0.57 - 0.22

0.5

0.2

250

NO 1.00 1.00 0.18 0.01 0.10 0.35 0.07 0.08 0.09 0.01

DIS 1.00 0.59 0.15 0.87 0.03 0.26 0.03 0.39 0.62 0.11

COB 1.00 1.00 0.60 0.01 0.55 0.47 0.53 0.68 0.27 0.45

1000

NO 1.00 1.00 0.46 0.14 0.25 0.01 0.00 0.07 0.08 0.01

DIS 1.00 0.50 0.34 0.97 0.21 0.01 0.00 0.55 0.76 0.54

COB 1.00 1.00 0.92 0.08 0.88 0.03 0.09 0.83 0.67 0.77

0.4

250

NO 1.00 1.00 0.62 0.03 0.34 0.35 0.08 0.10 0.10 0.01

DIS 1.00 0.83 0.10 0.68 0.03 0.26 0.03 0.26 0.42 0.03

COB 1.00 1.00 0.82 0.03 0.60 0.46 0.34 0.38 0.08 0.15

1000

NO 1.00 1.00 0.99 0.60 0.83 0.01 0.00 0.07 0.08 0.01

DIS 1.00 0.88 0.16 0.79 0.16 0.01 0.00 0.30 0.51 0.10

COB 1.00 1.00 1.00 0.54 0.95 0.02 0.02 0.43 0.20 0.30

Table 1: Mean estimated fractional cointegration rank for a bivariate fractionally integrated
system. The DGP is based on Equations (5) to (9). In case of fractional cointegration β = (−1,1)

′

and b = d. Break sizes are random with mean zero and variance one, they occur with probability
5/T , and in case of joint breaks γ = (−1,1)

′
. Our estimator is considered with l = T 0.5, m = T 0.75,

m1 = T 0.7, N = m−0.2
1 , and the univariate estimator by Iacone (2010) to estimate d and for the

procedures by Robinson and Yajima (2002) (RY02), Chen and Hurvich (2006) (CH06), Robinson
(2008a) (R08), and Souza et al. (2018) (SRF) parameter values are chosen according to the
authors recommendation.

(the significance level) otherwise as all of the procedures test the null of no fractional

cointegration.

Table 1 shows that our procedure works well for all of the considered scenarios. It
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correctly identifies fractional cointegration respectively no fractional cointegration in

most of the cases. In Section 3 we mentioned that two scenarios are of particular

importance, the case when no fractional cointegration is present but joint breaks, as

standard procedure might spuriously indicate fractional cointegration, and the case of

fractional cointegration but distinct breaks, as standard procedure might have problems

detecting the fractional cointegration relation in this case. The table shows that our

estimator works well in both cases with minor distortions for the first case in a small

sample size of T = 250. When increasing the sample size these vanish completely. In

contrast to this, all other procedures show problems in at least one of the two cases.

In the first case, the rejection rates of CH06, R08 (for r = 0.5), and SRF increase

with increasing T implying that asymptotically the tests will always indicate fractional

cointegration in the case of joint breaks, no matter if the series are truly fractionally

cointegrated. RY02 has serious problems in the second case where at least for d = 0.2 the

estimated cointegration rank decreases with increasing T implying that asymptotically

the estimator will always indicate no fractional cointegration in the case of distinct

breaks, no matter if the series are truly fractionally cointegrated.

Consequently, there is a risk in empirical applications that these procedures miss a

fractional cointegration relation due to structural breaks or falsely indicate a fractional

cointegration relation due to joint breaks in the series. In contrast, our procedure delivers

the required robustness to correctly detect whether fractional cointegration is present in

the case of low frequency contaminations while also performing well in the case that they

are not. Here, the results are comparable to those achieved by RY02 which outperforms

all other procedures in this setup.

The table further reveals that the performance of our estimator does not depend on

d. In contrast, the performance of the other estimators improves when increasing d as

implied by Theorem 2.

Lastly, it can be seen that when introducing cross-sectionally correlated errors the likeli-

hood of all procedures, except R08, to indicate the two time series as fractionally cointe-

grated increases. However, the ranking of the procedures and therefore the advantages

that our estimator has in comparison to the other approaches stays the same.

5.2 Order of integration

After providing evidence that we can robustly determine the fractional cointegration

rank also in small samples, we now focus on robust estimation of the memory parameter.

We consider the same DGPs as before and again use m = T 0.75 and l = T 0.5 for robust

estimation. Furthermore, we state the results for the standard multivariate estimator

by Shimotsu (2007) and Robinson (2008b). For comparison, we assume the fractional

cointegration rank to be known. Tables OA.7 and OA.8 in the Online Appendix show

the qualitatively similar results when first estimating the fractional cointegration rank

and then estimating the order of integration.

Table 2 has the bias and RMSE of the estimators when no fractional cointegration is
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Estimator TMLW GSE

Bias RMSE Bias RMSE

r d T breaks d̂1 d̂2 d̂1 d̂2 d̂1 d̂2 d̂1 d̂2

0

0.2

250

NO -0.03 -0.02 0.19 0.20 -0.02 -0.02 0.08 0.08

DIS 0.02 0.01 0.20 0.20 0.18 0.18 0.22 0.22

COB 0.01 0.01 0.19 0.20 0.17 0.17 0.20 0.20

1000

NO -0.02 -0.01 0.09 0.09 -0.01 -0.01 0.04 0.04

DIS 0.01 0.01 0.09 0.09 0.17 0.17 0.19 0.19

COB 0.01 0.01 0.09 0.09 0.16 0.16 0.18 0.18

0.4

250

NO -0.04 -0.04 0.20 0.20 -0.02 -0.02 0.08 0.08

DIS -0.01 -0.01 0.19 0.20 0.08 0.08 0.12 0.12

COB -0.01 -0.01 0.19 0.19 0.07 0.07 0.11 0.11

1000

NO -0.02 -0.02 0.09 0.09 -0.01 -0.01 0.04 0.04

DIS -0.01 -0.01 0.09 0.09 0.06 0.06 0.09 0.09

COB -0.01 -0.01 0.09 0.09 0.06 0.06 0.08 0.08

0.5

0.2

250

NO -0.02 -0.02 0.15 0.15 -0.01 -0.02 0.06 0.07

DIS 0.03 0.03 0.16 0.16 0.20 0.20 0.23 0.23

COB 0.00 0.00 0.15 0.15 0.13 0.13 0.17 0.17

1000

NO -0.01 -0.01 0.07 0.07 -0.01 -0.01 0.04 0.04

DIS 0.02 0.02 0.08 0.08 0.19 0.19 0.21 0.21

COB 0.00 0.00 0.07 0.07 0.13 0.13 0.15 0.15

0.4

250

NO -0.04 -0.04 0.16 0.16 -0.02 -0.02 0.06 0.07

DIS 0.00 0.00 0.15 0.15 0.09 0.09 0.13 0.13

COB -0.02 -0.02 0.15 0.15 0.05 0.05 0.09 0.09

1000

NO -0.02 -0.02 0.07 0.07 -0.01 -0.01 0.04 0.04

DIS 0.00 0.00 0.07 0.07 0.07 0.07 0.09 0.09

COB -0.01 -0.01 0.07 0.07 0.04 0.04 0.07 0.07

Table 2: Bias and RMSE of our trimmed multivariate local Whittle estimator and the standard
multivariate local Whittle estimator in a bivariate fractionally integrated system. The DGP is
based on Equations (5) to (9). Break sizes are random with mean zero and variance one, they

occur with probability 5/T , and in case of joint breaks γ = (−1,1)
′
. Moreover, we use m = T 0.75,

l = 1 for the standard estimator, and l = T 0.5 for our procedure.

present and Table 3 states the bias and RMSE when fractional cointegration is present.
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Estimator TMLW GSE

Bias RMSE Bias RMSE

r d T breaks d̂− d̃ d̂ β̂ d̂− d̃ d̂ β̂ d̂− d̃ d̂ β̂ d̂− d̃ d̂ β̂

0

0.2

250

NO -0.02 -0.03 -0.28 0.20 0.19 2.75 -0.02 -0.02 0.01 0.08 0.07 1.15

DIS 0.08 0.01 0.11 0.22 0.19 2.82 0.37 0.17 1.32 0.39 0.21 3.88

COB -0.02 0.01 -0.21 0.20 0.19 2.65 -0.02 0.18 0.00 0.08 0.22 0.32

1000

NO -0.01 -0.02 -0.02 0.09 0.09 1.27 -0.01 -0.01 0.00 0.04 0.04 0.17

DIS 0.06 0.01 0.13 0.12 0.09 1.84 0.37 0.16 1.50 0.39 0.18 3.92

COB -0.01 0.01 -0.03 0.09 0.09 1.18 -0.01 0.17 0.00 0.04 0.19 0.06

0.4

250

NO -0.02 -0.04 -0.12 0.19 0.20 1.99 -0.02 -0.01 0.00 0.08 0.08 0.18

DIS 0.08 -0.01 0.05 0.22 0.19 2.16 0.38 0.07 0.58 0.40 0.12 3.15

COB -0.02 -0.02 -0.13 0.20 0.20 1.84 -0.02 0.08 0.00 0.08 0.13 0.09

1000

NO -0.01 -0.02 -0.01 0.09 0.09 0.25 -0.01 -0.01 0.00 0.04 0.04 0.05

DIS 0.06 -0.01 -0.02 0.12 0.09 0.59 0.39 0.05 0.46 0.40 0.08 2.88

COB -0.01 -0.01 0.00 0.09 0.09 0.22 -0.01 0.06 0.00 0.04 0.09 0.03

0.5

0.2

250

NO -0.03 -0.02 -2.58 0.18 0.18 5.28 -0.02 -0.02 -0.48 0.07 0.07 2.05

DIS 0.12 0.04 -3.34 0.23 0.19 5.95 0.43 0.18 -2.62 0.44 0.22 5.92

COB -0.02 0.02 -2.29 0.18 0.18 4.98 0.03 0.18 -0.10 0.08 0.22 0.82

1000

NO -0.02 -0.01 -0.90 0.09 0.09 2.89 -0.01 -0.01 -0.05 0.04 0.04 0.38

DIS 0.10 0.02 -3.09 0.15 0.09 5.51 0.42 0.17 -4.11 0.43 0.19 6.93

COB -0.01 0.01 -0.74 0.09 0.09 2.63 0.04 0.16 -0.03 0.06 0.19 0.10

0.4

250

NO -0.02 -0.03 -1.08 0.18 0.18 3.19 -0.02 -0.02 -0.03 0.08 0.07 0.17

DIS 0.11 0.00 -2.15 0.23 0.18 4.55 0.42 0.09 -3.09 0.44 0.13 5.73

COB -0.01 0.00 -0.93 0.19 0.18 2.97 0.01 0.08 -0.02 0.07 0.12 0.11

1000

NO -0.01 -0.02 -0.07 0.09 0.09 0.38 -0.01 -0.01 -0.01 0.04 0.04 0.05

DIS 0.10 0.00 -0.53 0.15 0.09 1.64 0.42 0.07 -4.53 0.43 0.09 6.54

COB -0.01 -0.01 -0.06 0.09 0.09 0.43 0.02 0.06 -0.01 0.04 0.08 0.04

Table 3: Bias and RMSE of our trimmed multivariate local Whittle estimator and the standard
multivariate local Whittle estimator in a bivariate fractionally cointegrated system with cointe-
gration vector β = (1,−1)

′
. The DGP is based on Equations (5) to (9). Break sizes are random

with mean zero and variance one, they occur with probability 5/T , and in case of joint breaks

γ = (−1,1)
′
. Moreover, we use m = T 0.75, l = 1 for the standard estimator, and l = T 0.5 for our

procedure.

In the case of no fractional cointegration, we estimate the two memory parameters d1

and d2 of the two time series. Table 2 shows that in this case bias and RMSE of our

estimator are small in all scenarios and that they decrease with increasing sample size.

It is further revealed that the processes without breaks and with joint breaks typically

result in a small negative bias in small samples, while the process with distinct breaks

causes a small positive bias in small samples. Since increasing d seems to decrease the
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bias while increasing r seems to increase it, changing these two parameters can increase

or decrease the accuracy of the estimation depending on which process is considered, i.e.

whether the process comes with a slightly negative or positive bias. It needs to be noted,

however, that the absolute value of the bias itself and therefore also the changes in bias

are of such a small magnitude in all scenarios that they barely reflect in the RMSE.

If we consider the standard estimator we can see that they are upward biased in case of

low frequency contaminations. The bias is large for d = 0.2 and does not seem to vanish

asymptotically when increasing T . However, it does decrease when increasing d as again

implied by Theorem 2. The table further reveals that the variance of the standard

estimator is lower than those of our procedure since more frequencies are considered for

estimation. When increasing T the difference becomes smaller as implied by Theorem

5.

In the case of fractional cointegration we estimate the memory parameter d, the reduc-

tion of memory through the fractional cointegration relation d− d̃, and the cointegrating

vector β. As Table 3 shows, for the estimation of the memory parameter the same con-

clusion as for the case without a cointegration relation can be drawn. Bias and RMSE

are small even for T = 250 and they decrease with increasing sample size. The influence

of the break process, d, and r on the estimation result also stays the same. Concerning

the estimation of d̂− d̃ it can be observed that the estimator works well when consid-

ering the processes without breaks or with joint breaks. For the process with distinct

breaks there is a positive bias which vanishes with increasing sample size. It should be

noted that we could further decrease this bias by increasing l. This, however, comes

at the cost of an increased variance of the estimator. Concerning the estimate of the

cointegration vector β we can see that the estimator works well in large samples, i.e.

T ≥ 1,000. Here, bias and RMSE are rather small and we only observe a meaningful bias

and variance for the distinct break process and cross-sectionally correlated errors. This,

however, vanishes if we further increase T . For T = 250 and r = 0 the estimator performs

well although it exhibits some variance. The only case where substantial distortions are

present is for T = 250 and r = 0.5 where the estimator seems to be negatively biased.

However, as mentioned before, the bias disappears for larger samples.

As in the case of no fractional cointegration the standard estimator shows a substantial

positive bias which decreases in d but not in T when low frequency contaminations are

present. The estimate of d− d̃ is accurate in the case of joint breaks but enormously

upward biased in the case of distinct breaks. The same conclusion can also be drawn

for the estimate of β with the difference that the bias is positive in case of r = 0 and

negative for r = 0.5. As before it can again be observed that the variance of the standard

estimator is smaller than of our procedure resulting in smaller RMSEs when no low

frequency contaminations are present.

To summarize, the standard estimators are upward biased in the case of low frequency

contaminations. In contrast, our estimator is robust to low frequency contaminations in

the case of no fractional cointegration as well as in the case of fractional cointegration.
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The price for this robustness is an increased variance which might be problematic when

estimating β in small samples as the variance of the standard estimator is already large

in this case. When increasing T this problem disappears making our estimator well

suited for estimating the order of integration and the cointegration vector.

6 Empirical Example

To demonstrate the empirical relevance of our procedures we consider an example in-

vestigating the daily realized beta of two American stocks, namely Chevron (CVX) and

ExxonMobil (XOM), relative to the S&P500 between January 1996 and February 2017

(T = 5,238). Realized betas measure the systematic risk of a stock and are defined as

the realized covariance of the stock with the market divided by the realized variance of

the stock. To construct these series we use 5-minute returns obtained from the Thomson

Reuters Tick History database. These returns are cleaned following the recommenda-

tions of Barndorff-Nielsen et al. (2009) to account for the typical high frequency data

quality issues.

To give a first graphical impression, Figure 2 plots the realized betas and the corre-

sponding autocorrelation function and periodogram for the two stocks we consider. It

can be seen that the autocorrelation function and periodogram indicate the series to be

highly persistent with significant positive correlation even after 200 lags and a pole at

the origin.

Despite such evidence for persistence, realized betas have been sparsely investigated

concerning their order of integration so far. A noteworthy study in this context is the

one by Andersen et al. (2006), who find that quarterly betas in the time period 1969 until

1999 were best described by a process with d ≈ 0.2. It should be noted, however, that

due to the small number of observations their analysis is based on graphical investigation

rather than consistent and robust estimation of the memory parameter.

The two constituents of realized beta, realized variance and realized covariance, on the

other hand, have been investigated more extensively. Depending on the investigated

stock and time period, it is found that realized variances can be best described by

pure long memory processes (cf. e.g. Andersen et al. (2003) and Corsi (2009)) or

a combination of long memory process and shift process (cf. e.g. Liu and Maheu

(2007) and Choi et al. (2010)). For realized covariances, although less considered in the

literature, a similar conclusion might be drawn (cf. e.g. Bertram et al. (2013) and Asai

and McAleer (2015)).

To summarize, there is evidence that realized betas are fractionally integrated. Further-

more, since we investigate two companies who both mainly operate in the same industry,

it seems reasonable to assume that they face the same relation to the systematic risk

factor. This would imply a fractional cointegration relation between the two series. How-

ever, the series might also exhibit low frequency contaminations caused by structural

breaks in the realized volatility or the realized covariance. Therefore, estimating the
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Figure 2: Top: Daily realized betas of Chevron and ExxonMobile relative to the S&P500 from
January 1996 to February 2017. Middle: Corresponding autocorrelation functions excluding lag
zero. Bottom: Corresponding periodograms.
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T̂RY T̂T RE r̂gRY r̂gT RE MLWS GSE TMLW ˆ̃d β̂

Chevron
0.21 0.40 0 1 3.84

0.346
0.180 0.059 0.491

ExxonMobile 0.375

Table 4: Multivariate estimation results. T̂RY and r̂gRY correspond to the test for equality of d
and the fractional cointegration rank estimator by Robinson and Yajima (2002) and T̂T RE and
r̂gT RE to our robust procedure. In analogy, GSE corresponds to the d estimate by the standard
multivariate local Whittle estimator from Shimotsu (2007) and Robinson (2008b) and TMLW to
the estimate by our trimmed estimator for which we also state the estimated reduction in memory
b̂ and the estimated cointegration vector β̂. Finally, MLWS corresponds to the test statistic of
the multivariate test for spurious long memory by Sibbertsen et al. (2018). For our procedures
we employ the parameter combination used in Section 5. For the procedures by Robinson and
Yajima (2002), Shimotsu (2007) and Robinson (2008b), and Sibbertsen et al. (2018) we consider
the parameter combinations recommended by the authors.

memory of realized betas and thereby estimating the fractional cointegration relation

should be done using our robust methods.

To demonstrate this, we test whether the two series exhibit equal order of integration

and then estimate the fractional cointegration rank of the two series using the standard

procedure by Robinson and Yajima (2002) and our robust procedure. As mentioned

in Section 3, for the test we need to decide for a robust univarite estimator. Here, we

consider the estimator by Iacone (2010), the results are, however, qualitatively similar

when considering the estimators by McCloskey and Perron (2013) or Hou and Perron

(2014). We are then able to compute the multivariate local Whittle estimator by Shi-

motsu (2007) and Robinson (2008b) and our robust multivariate local Whittle estimator.

Additionally, we apply the multivariate MLWS test by Sibbertsen et al. (2018) to test

for low frequency contaminations. For our methods we use the parameter combinations

recommended in Section 5 and for the other methods we use the parameter combinations

recommended by the authors of the procedures. The results are displayed in Table 4.

For estimating the fractional cointegration rank, we first need to test whether the series

exhibit an equal order of integration. Otherwise, fractional cointegration can be excluded

right away. The table shows that both, robust and standard test statistic are clearly

below the five percent critical value of 1.96. Therefore, the null hypothesis that the

series are equally integrated cannot be rejected meaning that it is sensible to investigate

whether the two series are fractionally integrated. It can be seen that the procedure

by Robinson and Yajima (2002) indicates the cointegration rank to be zero, i.e. no

fractional cointegration while our robust procedure estimates it to be 1. Furthermore,

the multivariate MLWS by Sibbertsen et al. (2018) shows a test statistic of 3.84 which

is above the one percent critical value of 1.517 implying that the series exhibit low

frequency contaminations. These then dominate the G matrix in the lower frequencies

letting the matrix appear to have full rank which makes the standard estimator by
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Robinson and Yajima (2002) unable to detect the cointegration relation. In contrast,

our procedure trims those frequencies and is therefore robust to the contaminations.

If we then estimate the order of integration using the standard multivariate local Whittle

estimator our error is twofold. First, we have a positive bias of the estimates caused by

the low frequency contaminations. Second, we ignore the fact that the two series are

fractionally cointegrated causing a bias as well. This reflects in the estimates made by

the standard multivariate local Whittle estimator and our trimmed estimate stated in

column four and five of Table 4. While the standard procedure estimates the memory

parameters to be 0.35 respectively 0.38, our robust estimator yields a significantly lower

value of 0.18 for both series which is in line with the considerations by Andersen et al.

(2006) that realized betas have a d of approximately 0.2. The estimator further states the

reduction in memory to be 0.06 and the fractional cointegration vector to be (1,−0.49)
′
.

7 Conclusion

In this paper we formally define the concept of spurious fractional cointegration, an

extension to the well discussed problem of spurious long memory to the multivariate

case. We show that this phenomenon can appear in practice leading to wrong inference.

Spurious fractional cointegration is similar to spurious long memory caused by low fre-

quency contaminations of the periodogram. We therefore in a first step investigate the

behaviour of the pseudo-periodogram of a versatile class of time-varying mean processes.

To handle spurious fractional cointegration we provide a method to estimate the rank

of possible common low frequency contaminations and propose a trimmed version of the

procedure of Robinson and Yajima (2002) to robustly estimate the correct fractional

cointegration rank. Furthermore, a robust multivariate local Whittle estimator for the

order of integration and cointegrating vector is proposed which is based on a multivari-

ate extension of the trimmed univariate local Whittle estimator by Iacone (2010). In

a Monte Carlo section the satisfying finite sample behavior of the procedures are dis-

played. An application to realized betas of two American stocks shows the usefulness of

the methods.
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Appendix

Before proving Lemmas 1, 2 and 3 we need two auxiliary lemmas. For the structural-

change processes in (1) and (2) we have the following result.

Lemma 4. The discrete Fourier transform (DFT) of the process in (1) can be repre-

sented as

wµ(λ j) =− 1√
2πT

K

∑
k=1

∆µkDTk(λ j),

and that of the process in (2) can be represented as

wµ(λ j) =− 1√
2πT

K

∑
k=0

µk
(
DTk−1(λ j)−DTk−1(λ j)

)
,

where DTk(λ j) = ∑
Tk
t=1 eiλ jt is a version of the Dirichlet kernel.

Note that Lemma 4 is completely algebraic and we do not impose any conditions on the

∆µk, µk, or Tk.

Proof of Lemma 4:

From (1), we have

wµ(λ j) =
1√
2πT

T

∑
t=1

{
µ0 +

K

∑
k=1

1(t ≥ Tk)∆µk

}
eiλ jt =

1√
2πT

{
µ0

T

∑
t=1

eiλ jt +
K

∑
k=1

∆µk

T

∑
t=1

1(t ≥ Tk)eiλ jt

}
.

Here,

T

∑
t=1

1(t ≥ Tk)eiλ jt =
T

∑
t=Tk

eiλ jt =
T

∑
t=1

eiλ jt −
Tk

∑
t=1

eiλ jt = DT (λ j)−DTk (λ j).

Therefore,

wµ(λ j) =
1√
2πT

{
DT (λ j)µ0 +

K

∑
k=1

∆µk
[
DT (λ j)−DTk (λ j)

]}

=
1√
2πT

{[
µ0 +

K

∑
k=1

∆µk

]
DT (λ j)−

K

∑
k=1

∆µkDTk (λ j)

}
.

Furthermore, we have

DT (λ j) =
ei(T+1)λ j − eiλ j

eiλ j −1
= ei(T−1)λ j/2 sin(T λ j/2)

sin(λ j/2)
, (10)

cf. Beran et al. (2013), p. 327. Note that λ jT = 2π j, ei(T+1)λ j = eiλ jT eiλ j , and ei2π j = cos(2π j) +

isin(2π j) = cos(2π) + isin(2π) = 1. Therefore, DT (λ j) = eiλ j−eiλ j

eiλ j−1
= 0, which proves the first part

of the lemma.
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Similarly, for the second part of the lemma, we have from (2) that

wµ(λ j) =
1√
2πT

T

∑
t=1

{
µ0 +

K

∑
k=0

µk1(Tk−1 ≤ t < Tk)

}
eiλ jt

=
1√
2πT

{
µ0

T

∑
t=1

eiλ jt +
K

∑
k=0

µk

T

∑
t=1

1(Tk−1 ≤ t < Tk)eiλ jt

}
.

Here,

T

∑
t=1

1(Tk−1 ≤ t < Tk)eiλ jt =
T

∑
t=1
{1(Tk > t)−1(Tk−1 ≥ t)}eiλ jt

=
Tk−1

∑
t=1

eiλ jt −
Tk−1

∑
t=1

eiλ jt = DTk−1(λ j)−DTk−1(λ j).

Therefore, since DT (λ j) = 0, we have

wµ(λ j) =
1√
2πT

K

∑
k=0

µk
{

DTk−1(λ j)−DTk−1(λ j)
}
.

Since Lemma 4 implies that the properties of the DFT and thus the properties of the

periodogram of a structural-change process are directly related to those of the Dirich-

let kernel, the following lemma provides an approximation for the Dirichlet kernel at

frequencies local to zero.

Lemma 5. We have for Tk/T = δk ∈ (0,1) and j/T → 0,

DTk(λ j) = T j−1 sin(2δkπ j)
2π

+ sin2(π jδk)

+ i
[

T j−1 sin2(πδk j)
π

− 1
2

sin(2πδk j)
]

+ OP( jT−1).

Clearly, from Lemma 5, both the real and the imaginary part of the Dirichlet kernel are

O(T j−1) for deterministic δk and Op(T j−1) if any of the δk are stochastic. Furthermore,

the order is exact. Again, this is an approximation based on a Laurent expansion that

holds irrespective of the stochastic properties of the Tk.

Proof of Lemma 5:

From the second expression in (10) in the proof of Lemma 4 we can decompose the real and the

imaginary parts of the DFT at the Fourier frequencies λ j = 2π j/T as follows

DTk (λ j) =
ei(Tk−1)λ j/2 sin(Tkλ j/2)

sin(λ j/2)

=
[cos((Tk−1)λ j/2)+ isin((Tk−1)λ j/2)]sin(Tkλ j/2)

sin(λ j/2)
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It follows by the sum-to-product identities that

DTk (λ j) =
sin( Tk−1

T π j + Tk
T π j)− sin( Tk−1

T π j− Tk
T π j)

2sin( π j
T )

+ i
cos( Tk−1

T π j− Tk
T π j)− cos( Tk−1

T π j + Tk
T π j)

2sin( π j
T )

=
sin(2δkπ j− π j

T )+ sin( π j
T )

2sin( π j
T )

+ i
cos( π j

T )− cos(2δkπ j− π j
T )

2sin( π j
T )

.

By a Laurent series approximation around λ j = 0, we obtain

DTk (λ j) = T j−1 sin(2δkπ j)
2π

+ sin2(π jδk)+ OP( jT−1)

+ i
[

T j−1 sin2(πδk j)
π

− 1
2

sin(2πδk j)+ OP( jT−1)

]
,

where the Laurent series is obtained from separate Taylor approximations for each of the trigono-

metric functions. This proves the lemma.

We can now prove the Lemmas 1, 2 and 3.

Proof of Lemma 1:

For µt = h(t/T,T ), by combining Lemma 4 with Lemma 5, we have

Iµ(λ j) =

∣∣∣∣∣− 1√
2πT

T

∑
t=1

∆µtDt(λ j)

∣∣∣∣∣
2

= (2πT )−1


[

T
T

∑
t=1

∆µt sin(2π jt/T )

2π j
+

T

∑
t=1

∆µt sin2(π jt/T )+ T−1
T

∑
t=1

∆µtOP( j)

]2

+

[
T

T

∑
t=1

∆µt
sin2(π jt/T )

π j
−1/2

T

∑
t=1

∆µt sin(2π jt/T )+ T−1
T

∑
t=1

∆µtOP( j)

]2


Factoring out T from the square brackets gives

2πIµ(λ j)T−1 =


[

T

∑
t=1

∆µt sin(2π jt/T )

2π j
+ T−1

T

∑
t=1

∆µt sin2(π jt/T )+ T−2
T

∑
t=1

∆µtOP( j)

]2

+

[
T

∑
t=1

∆µt
sin2(π jt/T )

π j
− 1

2T

T

∑
t=1

∆µt sin(2π jt/T )+ T−2
T

∑
t=1

∆µtOP( j)

]2
 .

Now, using ∆µt = h(t/T,T )−h((t−1)/T,T ), we have

lim
T→∞

∆µtT = lim
T→∞

∂h(t/T,T )

∂(t/T )
,
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so that

2πIµ(λ j)T−1

∼


[

1
2π jT

T

∑
t=1

∂h(t/T,T )

∂(t/T )
sin(2π jt/T )+

T

∑
t=1

∂h(t/T,T )

∂(t/T )

1
T 2 sin2(π jt/T )+

1
T 3

T

∑
t=1

∂h(t/T,T )

∂(t/T )
OP( j)

]2

+

[
T

∑
t=1

∂h(t/T,T )

∂(t/T )

sin2(π jt/T )

π jT
− 1

2

T

∑
t=1

∂h(t/T,T )

∂(t/T )

1
T 2 sin(2π jt/T )+

1
T 3

T

∑
t=1

∂h(t/T,T )

∂(t/T )
OP( j)

]2
 ,

where a∼ b means that the ratio of a and b converge to 1, as T → ∞. Here and in the following

this shorthand notation is used to improve the readability of the proof.

By the definition of a Riemann integral

2πIµ(λ j)T−1

∼

{[
1

2π j

∫ 1

0

∂h(s,T )

∂s
sin(2π js)ds +

1
T

∫ 1

0

∂h(s,T )

∂s
sin2(π js)ds + T−2

∫ 1

0

∂h(s,T )

∂s
OP( j)ds

]2

+

[∫ 1

0

∂h(s,T )

∂s
sin2(π js)

π j
ds− 1

2T

∫ 1

0

∂h(s,T )

∂s
sin(2π js)ds + T−2

∫ 1

0

∂h(s,T )

∂s
OP( j)ds

]2}
.

Clearly, both parts of this expression are dominated by the first term in the respective square

bracket, such that

Iµ(λ j)∼
T

8π3 j2

{[∫ 1

0

∂h(s,T )

∂s
sin(2π js)ds

]2

+

[∫ 1

0

∂h(s,T )

∂s
(1− cos(2π js))ds

]2
}
,

which finishes our proof.

Proof of Lemma 2:

First, by (10) in the proof of Lemma 4 we have

DTk (λ j)D∗Tu(λ j) = ei(Tk−Tu)λ j/2 sin(Tkλ j/2)sin(Tuλ j/2)

sin2(λ j/2)
= 2eiπ j(δk−δu) sin(δkπ j)sin(δuπ j)

1− cos(λ j)
.

By a Laurent expansion around λ j = 0, we have

DTk (λ j)D∗Tu(λ j) = 2eiπ j(δk−δu) sin(δkπ j)sin(δuπ j)
1− [1−2π2( j/T )2 + O(( j/T )4)]

=
T 2

π2 j2 eiπ j(δk−δu) sin(δkπ j)sin(δuπ j)+ OP(1). (11)

In particular, for the case when Tk = Tu = t, we obtain

Dt(λ j)D∗t (λ j) =
T 2

2π2 j2 (1− cos(2πt j/T ))+ O(1). (12)

Furthermore, we have

K

∑
k=1

∆µkDTk (λ j) =
T

∑
t=1

∆µtDt(λ j), where ∆µt =

∆µk, if t = Tk

0, otherwise.
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In addition to that,

Iµ(λ j) = A + B =
1

2πT

T

∑
t=1

T

∑
s=1

∆µt∆µsDt(λ j)D∗s (λ j)

=
1

2πT

T

∑
t=1

(∆µt)
2Dt(λ j)D∗t (λ j)+

1
2πT ∑

t 6=s
∆µt∆µsDt(λ j)D∗s (λ j).

Consequently, we have for term A and from (12) above

A =
1

2πT

T

∑
t=1

(∆µt)
2Dt(λ j)D∗t (λ j) =

T
4π3 j2

T

∑
t=1

(∆µt)
2(1− cos(2π jt/T ))+

O(1)

2πT

T

∑
t=1

(∆µt)
2

=
T

4π3 j2

{
T

∑
t=1

(∆µt)
2−

T

∑
t=1

(∆µt)
2 cos(2π jt/T )

}
+ OP(1). (13)

=
T

4π3 j2

{
K

∑
k=1

(∆µk)
2−

K

∑
k=1

(∆µk)
2 cos(2π jδk)

}
+ OP(1). (14)

To deal with term B, we revert back to the original representation in which the sum is random

and write

B =
1

2πT ∑
t 6=s

∆µt∆µsDt(λ j)D∗s (λ j) =
1

2πT ∑
k 6=u

∆µk∆µuDTk (λ j)D∗Tu(λ j),

where k, l = 1, ...,K. Similar to the approach above, we have from (11)

B =
T

2π3 j2 ∑
k 6=u

∆µk∆µueiπ j(δk−δu) sin(δkπ j)sin(δuπ j)+
1

2πT ∑
k 6=u

∆µk∆µuOP(1) (15)

The first part of the lemma i.) follows immediately from (14) and (15).

For the second part of the lemma, from Assumption A4 we have E[K] = E[ptT ] = p̃T 1−α and,

from (13) and (14)

E[A] =
T

4π3 j2

{
E

[
K

∑
k=1

(∆µk)
2

]
−E[∆µ2

t ]
T

∑
t=1

cos(2π jt/T )

}
+ O(1)

=
T

4π3 j2 E

[
K

∑
k=1

(∆µk)
2

]
+ O(1),

since ∑
T
t=1 cos(2π jt/T ) = 0.

Now, from Assumption A3 we have E[(∆µk)
2] = σ2

∆
T−β, so that by the generalized Wald identity

of Brown (1974) and Assumption A4

E[A] =
T

4π3 j2 E[K]E[(∆µk)
2] =

p̃σ2
∆

T 2−α−β

4π3 j2 + o(1).

Similarly, from (15)

E[B] =
T

2π3 j2 E

[
∑
k 6=u

∆µk∆µueiπ j(δk−δu) sin(δkπ j)sin(δuπ j)

]
+

O(1)

2πT
E

[
∑
k 6=u

∆µk∆µu

]
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and by the generalized Wald identity of Brown (1974) in conjunction with Assumption A5

E[B] =
T

2π3 j2 E

[
∑
k 6=u

E [∆µk∆µu]E
[
eiπ j(δk−δu) sin(δkπ j)sin(δuπ j)

]]
+

O(1)

2πT
E

[
∑
k 6=u

E [∆µk∆µu]

]
.

Therefore,

|E[B]| ≤ T
2π3 j2 E

[
∑
k 6=u
|E [∆µk∆µu]|

∣∣∣E [eiπ j(δk−δu) sin(δkπ j)sin(δuπ j)
]∣∣∣]+

∣∣∣∣∣O(1)

2πT
E

[
∑
k 6=u

E [∆µk∆µu]

]∣∣∣∣∣
≤ T

2π3 j2 E

[
∑
k 6=u
|E [∆µk∆µu]|

]
+
|O(1)|
2πT

E

[
∑
k 6=u
|E [∆µk∆µu]]

∣∣∣∣∣ .
Assumption A5 combined with Assumptions A3 and A4 implies that

E

[
∑
k 6=u
|E[∆µk∆µu]|

]
= 2E

[
K

∑
k=2

k−1

∑
τ=1
|E[∆µk∆µk−τ]|

]
≤ 2E [K]Var(∆µk)C̃ = 2 p̃C̃σ

2
∆T 1−α−β,

so that |E[B]| ≤ p̃σ2
∆

C̃
π3 j2 T 2−α−β +

∣∣O(T−α−β)
∣∣ .

Proof of Lemma 3:

From wµ(λ j) =− 1√
2πT ∑

K
k=0 µk[DTk−1(λ j)−DTk−1(λ j)], as shown in Lemma 4, we have

Iµ(λ j) = Ã + B̃ (16)

=
1

2πT

K

∑
k=0

µ2
k [DTk−1(λ j)D∗Tk−1(λ j)−DTk−1(λ j)D∗Tk−1

(λ j)−DTk−1(λ j)D∗Tk−1(λ j)+ DTk−1(λ j)D∗Tk−1
(λ j)]

+
1

2πT ∑
k 6=u

µkµu[DTk−1(λ j)D∗Tu−1(λ j)−DTk−1(λ j)D∗Tu−1
(λ j)−DTk−1(λ j)D∗Tu−1(λ j)+ DTk−1(λ j)D∗Tu−1

(λ j)].

Denoting (Tk−1)/T = δ̃k, we have from (11) for the term in square brackets in Ã

ãk =[DTk−1(λ j)D∗Tk−1(λ j)−DTk−1(λ j)D∗Tk−1
(λ j)−DTk−1(λ j)D∗Tk−1(λ j)+ DTk−1(λ j)D∗Tk−1

(λ)]

=
T 2

π2 j2

[
sin2(δ̃kπ j)+ sin2(δk−1π j)− eiπ j(δ̃k−δk−1) sin(δ̃kπ j)sin(δk−1π j)

−eiπ j(δk−1−δ̃k) sin(δ̃kπ j)sin(δk−1π j)
]

+ OP(1)

=
T 2

π2 j2 [1− 1
2

[
cos(2δ̃kπ j)+ cos(2δk−1π j)

]
−2sin(δ̃kπ j)sin(δk−1π j)cos(π j(δ̃k−δk−1))]+ OP(1),

from Euler’s formula. As in the proof of Lemma 1, the notation a∼ b is used as a shorthand for

limT→∞ a/b = 1. By the sum-to-product identity for the cosine, it follows

ãk =
T 2

π2 j2

[
1− 1

2

[
2cos(π j(δ̃k + δk−1))cos(π j(δ̃k−δk−1))

]
−2sin(δ̃kπ j)sin(δk−1π j)cos(π j(δ̃k−δk−1))

]
+ OP(1)

=
T 2

π2 j2

[
1− cos(π j(δ̃k−δk−1))

[
cos(π j(δ̃k + δk−1))+ 2sin(δ̃kπ j)sin(δk−1π j)

]]
+ OP(1).
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Now, by the product-to-sum identity of the sine

ãk =
T 2

π2 j2

[
1− cos(π j(δ̃k−δk−1))

[
cos(π j(δ̃k + δk−1))

+cos(π j(δ̃k−δk−1))− cos(π j(δ̃k + δk−1))
]]

+ OP(1)

=
T 2

π2 j2

[
1− cos2(π j(δ̃k−δk−1))

]
+ OP(1).

Therefore, we have

Ã =
1

2πT

K

∑
k=0

µ2
k ãk =

T
2π3 j2

K

∑
k=0

µ2
k [1− cos2(π j(δ̃k−δk−1))]+

(K + 1)OP(1)

2πT
(17)

For α < 1, by a Taylor expansion of the squared cosine at zero

ãk =
T 2

π2 j2

[
1−
[
1−π

2 j2(δ̃k−δk−1)2 + π
4 j4O((δ̃k−δk−1)4)

]]
+ OP(1)

= T 2
[
(δ̃k−δk−1)2−π

2 j2O((δ̃k−δk−1)4)
]

+ OP(1).

Therefore, we obtain

Ã =
1

2πT

K

∑
k=0

µ2
k

{
T 2
[
(δ̃k−δk−1)2−π

2 j2O((δ̃k−δk−1)4)
]

+ OP(1)
}

=
T
2π

K

∑
k=0

{
µ2

k(δ̃k−δk−1)2
}
− T π j2

4

K

∑
k=0

µ2
kO
(

(δ̃k−δk−1)4
)

+
OP(1)

2πT

K

∑
k=0

µ2
k . (18)

By applying the Wald identity for dependent random sums of Brown (1974) and then using

Assumption A5, we obtain

E[Ã] = E[K + 1]E[µ2
k ]

{
T
2π

E[(δ̃k−δk−1)2]− T π j2

4
E[O((δ̃k−δk−1)4)]+

O(1)

2πT

}
= (p̃T 1−α + 1)σ

2
∆T−β

{
T
π

D̃
p̃2 T 2(α−1)− T π j2

2
O(T 4(α−1))+ O(T−1)

}
=

σ2
∆

D̃
π p̃

T α−β−
σ2

∆
p̃π j2

2
O(T−2+3α−β)+ σ

2
∆ p̃O(T−α−β)

+
σ2

∆
D̃

π p̃
T−1+2α−β−π j2O(T−3+4α−β)+ O(T−1−β). (19)

For B̃, we have from (11),

B̃ =
T

2π2 j2 ∑
k 6=u

µkµu

[
eiπ j(δk−δu) sin(δkπ j)sin(δuπ j)− eiπ j(δk−δu−1) sin(δkπ j)sin(δu−1π j)

−eiπ j(δk−1−δu) sin(δk−1π j)sin(δuπ j)+ eiπ j(δk−1−δu−1) sin(δk−1π j)sin(δu−1π j)
]

+
OP(1)

2πT ∑
k 6=u

µkµu. (20)

Denote the term in the square bracket by b̃, and let b̃1 denote the first two summands and b̃2

- 34 -



the last two summands, so that b̃ = b̃1 + b̃2. We have

b̃1 = sin(δkπ j)
[
eiπ j(δk−δu) sin(δuπ j)− eiπ j(δk−δu−1) sin(δu−1π j)

]
= sin(δkπ j) [cos(π j(δk−δu))sin(δuπ j)− cos(π j(δk−δu−1))sin(δu−1π j)

+i{sin(π j(δk−δu))sin(π jδu)− sin(π j(δk−δu−1))sin(π jδu−1)}] .

Now, let γu = δu−δu−1. Then, by a Taylor approximation at γu = 0

b̃1 = π jγu sin(δkπ j)eiπ j(δk−2δu) + OP(γ
2
u).

Similarly, we have for the third and fourth term in the square bracket

b̃2 =−sin(δk−1π j)
[
eiπ j(δk−1−δu) sin(δuπ j)− eiπ j(δk−1−δu−1) sin(δu−1π j)

]
,

and by a Taylor approximation at γu = 0,

b̃2 =−π jγu sin(δk−1π j)eiπ j(δk−1−2δu) + OP(γ
2
u).

Therefore, we have

b̃ =−π jγu

[
sin(δkπ j)eiπ j(δk−2δu)− sin(δk−1π j)eiπ j(δk−1−2δu)

]
.

Defining γk = δk−δk−1, and approximating at γk = 0, we obtain

b̃ = π
2 j2

γuγke2iπ j(δk−δu) + OP(γ
2
u)+ OP(γ

2
k),

so that

B̃ =
T

2π2 j2 ∑
k 6=l

µkµu

[
π

2 j2
γuγke2iπ j(δk−δu) + OP(γ

2
u)+ OP(γ

2
k)
]

+
OP(1)

2πT ∑
k 6=u

µkµu

=
T
2 ∑

k 6=u
µkµuγuγke2iπ j(δk−δu) +

T
2π2 j2 ∑

k 6=l
µkµuOP(γ

2
u)+

T
2π2 j2 ∑

k 6=l
µkµuOP(γ

2
k)+

OP(1)

2πT ∑
k 6=u

µkµu. (21)

Similar to the proof of Theorem 2, we have from the Wald identity of Brown (1974) and As-

sumption A5

E[B̃] = B̃1 + B̃2 + B̃3

=
T
2

E

[
∑
k 6=l

E [µkµu]E
[
γuγke2iπ j(δk−δu)

]]
+

T
2π2 j2 E

[
∑
k 6=l

E [µkµu]E[OP(γ
2
k)]

]
+

O(1)

2πT
E

[
∑
k 6=u

E[µkµu]

]
.

For the first term

∣∣E[B̃1]
∣∣≤ T

2
E

[
∑
k 6=l
|E [µkµu]| |E [γuγk]|

]
= T E

[
K

∑
k=1

k−1

∑
τ=1
|E [µkµk−τ]| |E [γkγk−τ]|

]

≤ T E

[
K

∑
k=1

∣∣E [γ2
k
]∣∣ k−1

∑
τ=1
|E [µkµk−τ]|

]
.
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Therefore, by Assumptions A4 and A5

∣∣E[B̃1]
∣∣≤ T E

[
K

∑
k=1

∣∣E [γ2
k
]∣∣Var(µk)C̃

]
= T E[K]E

[
γ

2
k
]
Var(µk)C̃

=
2C̃D̃σ2

∆

p̃
T α−β +C̃

[
O(T 2α−1−β)+ O(T−β)+ O(T α−β−1)

]
. (22)

Similarly, for the second term

∣∣E[B̃2]
∣∣≤ 2T

π2 j2 E

[
K

∑
k=1

k−1

∑
τ=1

∣∣E [µkµk−τ]E
[
OP(γ

2
k)
]∣∣]

≤ 2T
π2 j2 E

[
K

∑
k=1

E
[
OP(γ

2
k)
] k−1

∑
τ=1
|E [µkµk−τ]|

]
≤

2C̃σ2
∆

π2 j2 T 1−βE

[
K

∑
k=1

OP(γ
2
k)

]

=
2C̃σ2

∆
p̃

π2 j2 T 2−α−β

[
O(T 2(α−1))+ O(T α−2)

]
=

2C̃σ2
∆

p̃
π2 j2

[
O(T α−β)+ O(T−β)

]
. (23)

The term B̃3 is of order O(T−α−β) by the same arguments as in the proof of Lemma 2. Conse-

quently, parts i.) and ii.) of the Lemma follow directly from Equations (17) and (20). Similarly,

part iii.) is the direct consequence of Equation (19) and Equations (22) and (23).

Proof of Theorem 1:

From Lemma 1 to 3, we have Iµ(λ j) ∼ T j−2κ under Assumption A2, Iµ(λ j) ∼ T j−2κ̃ under As-

sumption A1, and Iµ(λ j) ∼ T j−2κP,T under Assumption A3 with β = 0, where κ, κ̃ and κP,T are

two finite constants and a random variable with finite variance, respectively. E[Iµ(λ j)] = Gµ
T
j2

therefore follows immediately.

To prove that the rank of Gµ is reduced if and only if µt has common low frequency contamina-

tions, we first show that co-shifting according to Definition 1 implies a reduced rank of Gµ, and

then we show that Gµ has full rank, if µt is not co-shifting.

For the first part, note that Φ′µt = 0⇔ µat = φb/φaµbt . Let µbt = ωt , then

µt =

 µat

µbt

=

 φb/φa

1

⊗
 0 φb/φa

0 1

 0

ωt


Therefore,

fµ(λ j) =

 0 φb/φa

0 1

 0 0

0 fω(λ j)

 0 φb/φa

0 1

′

= fω(λ j)

 (φb/φa)2 φb/φa

φb/φa 1

 ,

so that det ( fµ(λ j)) = (φb/φa)2− (φb/φa)2 = 0.
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For the second part, let Φ′µt = ct , where ∃ ct 6= 0, then Φ′µt = ct ⇔ µat = φ−1
a ct−φa/φbµbt , so that

for µbt = ωt

µt =

 µat

µbt

=

 φ−1
a −φa/φb

0 1

 ct

ωt


Then, denoting ω̃t = (ct , ωt)

′, we have

fµt (λ j) =

 φ−1
a −φb/φa

0 1

 fω̃(λ j)

 φ−1
a 0

−φb/φa 1


=

 φ−2
a fcω(λ j)−φbφ−2

a fωc(λ j)−φbφ−2
a fcω(λ j)+ φ2

bφ−2
a fωω(λ j)

2 φ−1
a fcω(λ j)−φbφ−1

a fωω(λ j)

φ−1
a fωc(λ j)−φaφ

−1
b fωω(λ j) fωω(λ j)

 ,

so that det [ fµt (λ j)] = φ−1
a ( fcc(λ j) fωω(λ j)− fcω(λ j) fωc(λ j)) 6= 0.

To prove Theorem 2 we need the following Lemma.

Lemma 6. For e >−1

lim
m1→∞

m1

∑
j=1

je = ζ(−e)+
me+1

1
e + 1

+ O(me
1),

where ζ is the Riemann zeta function.

Proof of Lemma 6:

From the extension of the Faulhaber formula derived by McGown and Parks (2007)

lim
m1→∞

[
(e + 1)

m1

∑
j=1

je−mγFe(m1)

]
= (e + 1)ζ(−e)

lim
m1→∞

(e + 1)
m1

∑
j=1

je = (e + 1)ζ(−e)+ mγ

1Fe(m1)

lim
m→∞

m1

∑
j=1

je = ζ(−e)+
mγ

1Fe(m1)

(e + 1)
,

where

Fe(m1) = mbec+2
1 +

bec+1

∑
k=1

(−1)k
(

e + 1
k

)
Bkmbec+2−k

1

= mbec+2
1 + O

(
mbec+1

1

)
,

the constants Bk are the Bernoulli numbers, and γ =−(bec)+ 1− e = e−bec−1, so that

lim
m→∞

m1

∑
j=1

je = ζ(−e)+
me−bec−1

1

(
mbec+2

1 + O
(

mbec+1
1

))
e + 1

= ζ(−e)+
me+1

1 + O(me
1)

e + 1
.
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Proof of Theorem 2:

To prove the theorem we show that the difference of Ĝy(d, l,m1) and Ĝx(d,1,m1) vanishes in

probability. Let therefore ∆(d) = ‖Ĝy(d, l,m1)− Ĝx(d,1,m1)‖, then

∆(d) = ‖(m1− l + 1)−1
m1

∑
j=l

Λ j(d)Iµ(λ j)Λ
∗
j(d)−m−1

1

l−1

∑
j=1

Λ j(d)Ix(λ j)Λ
∗
j(d)+ Z + R‖,

where Z = (m1− l + 1)−1
∑

m1
j=l Λ j(d)Ixµ(λ j)Λ∗j(d) + (m1− l + 1)−1

∑
m1
j=l Λ j(d)Iµx(λ j)Λ∗j(d) and R =

(l− 1)(m1(m1− l + 1))−1
∑

m1
j=l Λ j(d)Ix(λ j)Λ∗j(d). Furthermore, define ν− = (da− d0

a)− (db− d0
b),

ν+ = (da−d0
a) + (db−d0

b), and Ix(λ j) = λ
−d0

a−d0
b

j χ jeiπ(d0
a−d0

b )/2, where χ j is a random matrix with

E[χ j] = I and Var[χ j] < ∞. Similarly, Iµ(λ j) = κ jλ
−2
j T−1, where E[κ j] < ∞ and Var[κ j] < ∞. Then

∆(d) = ‖ eiπ(da−db)/2

(m1− l + 1)T

m1

∑
j=l

λ
da+db−2
j κ j−

eiπν−/2

m1

l−1

∑
j=1

λ
ν+

j χ j + Z + R‖

= ‖ (2π)da+db−2eiπ(da−db)/2

(m1− l + 1)T da+db−1

m1

∑
j=l

jda+db−2
κ j−

(2π)ν+
eiπν−/2

m1T ν+

l−1

∑
j=1

jν+
χ j + Z + R‖.

Due to the independence of xt and µt , Z
p→ 0 as T → ∞. Obviously, R

p→ 0 for T → ∞ holds as

well. For l = 1, the second sum is empty and for the first sum it holds with A = ‖(m1− l +

1)−1T−da−db+1
∑

m1
j=l jda+db−2κ j‖ and da + db > 1 from Lemma 6

A≤max‖κ j‖
O(mda+db−2

1 )

T da+db−1 = op(1).

For da + db < 1, we have by definition of the Riemann ζ-function

A≤
max‖κ j‖ζ(−da−db + 2)

m1T da+db−1 ,

which is oP(1), for δm1 > 1−da−db.

For the second part of the theorem, we have ∑
m1
j=l jda+db−2 ≤m1lda+db−2. Therefore, with da +db <

1,

A≤ m1lda+db−2

(m1− l + 1)T da+db−1 = O(lda+db−2T−(da+db−1)) = oP(1),

for δm1 > δl and l = T (da+db−1)/(da+db−2)+υ. Furthermore, let B = ‖m−1
1 T−ν+

∑
l−1
j=1 jν+

χ j‖, then

B≤
max j<l ‖χ j‖

m1T ν+

l−1

∑
j=1

jν+
=

max j<l ‖χ j‖
m1T ν+ O(lν++1) = oP(1),

for l = o(T (ν++δm1 )/(ν++1)).

Proof of Theorem 3:

The proof directly follows from a Taylor expansion of the matrix Ĝy(d̂(m), l,m1) at d0 and is

omitted here.

Proof of Theorem 4:
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The proof follows ideas in Robinson (2008b). For any c > 0 define neighbourhoods Nβ(c) =

{β : |β− β0| < c] and Nd(c) = {d : ‖d − d0‖ < c]. Furthermore, fix ε > 0 and define N(ε) =

Nβ(ε−1( m
T )ν0

)Nd(ε), N(ε) = Θ\N(ε), and ζi = di−d0
i .

We split the parameter space into two. For a constant 0 < C ≤ 1
8 define Θda = {d ∈ Θd : ζa ≥

− 1
2 +C;ζb ≥ − 1

2 +C] and Θdb = Θd\Θda. Since P(θ̂ ∈ N(ε)) ≤ P(inf ¯N(ε){R(θ)−R(θ0)] ≤ 0), the

consistency of Θ̂ follows if we show

P

(
inf

N(ε)∩{Θβ×Θda}
{R(θ)−R(θ

0)} ≤ 0

)
→ 0 as T → ∞ and (24)

P

(
inf

N(ε)∩{Θβ×Θdb}
{R(θ)−R(θ

0)} ≤ 0

)
→ 0 as T → ∞. (25)

First we show (24). Rewrite R(θ)−R(θ0) as

R(θ)−R(θ
0) = logdet

[
Ω̂

tri(θ)Ω̂
tri(θ

0)
−1
]
−2(ζa + ζb)

1
m− l + 1

m

∑
j=l

logλ j,

with Ω̂tri(θ) = 1
m−l+1

m
∑
j=l

Re[Λ j(d)BItri
yy (λ j)B

′
Λ j(d)∗] instead of Ω̂(θ) in Robinson (2008b).

Define a vector type II I(d0
a ,d

0
b) process as

ξt =
(

ξat
ξbt

)
= B0,zt =

 (1−L)−d0
a yat 1(t ≥ 1)

(1−L)−d0
b ybt 1(t ≥ 1)

 ,B0 =

 1 −β0

0 1


Define further analogously to Robinson (2008b)

H j = (hk1k2 j) = Λ j(d0)Itri
ξ j (λ j)Λ j(d0)∗ and

Ĝ(1)(d) = (ĝ(1)
k1k2

), where ĝ(1)
k1k1

=
1

m− l + 1

m

∑
j=l

(
j

m

)2ζk1
hk1k1 j and

ĝ(1)
ab = ĝ(1)

ba =
1

m− l + 1

m

∑
j=l

(
j

m

)ζa+ζb (
ei(π−λ j)(ζb−ζa)/2hab j + e−i(π−λ j)(ζb−ζa)/2hba j

)
.

Similar to Robinson (2008b) we obtain R(θ)−R(θ0) = Ud(d)+Uβ(θ) with

U(d) = logdet
[
ϒ(d)Ĝ(1)(d)ϒ(d)Ĝ(1)(d0)

−1
]

+ Φa(d, l)+ u(d)+ Φb(d, l) and

Uβ(θ) = logdet
[
Ω̂

tri∗(θ)Ĝ(1)(d)−1
]
−Φa(d, l)+ Φb(d, l).
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Here,

ϒ(d) = diag
(

(2ζa + 1)1/2,(2ζb + 1)1/2
)
,

Ω̂
tri∗(θ) = Ξ(θ)Ω̂

tri(θ)Ξ(θ),

Ξ(θ) = diag
(

λ
−ζa
m ,λ−ζb

m

)
,

Φ1(d, l) = log
[
(l−1)2(l2ζa+1)−1(l2ζb+1)−1

]
,

Φ2(d, l) = 2(ζa + ζb)(l−1)−1l log l, and

u(d) = ∑
i=a,b

[
2ζi− log(2ζi + 1)+ 2ζi

(
logm− 1

m− l + 1

m

∑
j=l

log j−1

)]
.

The functions Φa(d, l) and Φb(d, l) control effects of taking summations from l by application

of the Euler-McLaurin formula as in Lemma 2(a) of Shimotsu (2010). In contrast to Robinson

(2008b) all matrices here are defined by the trimmed periodogram and we do not have the

parameter γ.

Now, (24) follows if we show that, as T → ∞

P

(
inf

N(ε)∩Θda

Ud(d)≤ 0

)
→ 0 and (26)

P

(
inf

Nβ( 1
ε
( T

m )ν0
)×Θd

Uβ(d)≤ 0

)
→ 0. (27)

The proof of (26) is similar to Robinson (2008b). Define the population analogue of ĝ(1)
k1k2

as

g(1)
k1k2

= ωk1k1

1
l

∫ 1

l
x2ζk1 dx

and

g(1)
ab = g(1)

ba = ωab
1
l

∫ 1

l
xζa+ζbdxcosτ,

where

τ = (ζb−ζa)
π

2
.

Then (26) holds if

sup
Θda

∣∣∣∣∣∣ϒ(d)[Ĝ(1)(d)−G(1)(d)]ϒ(d)
∣∣∣∣∣∣ P−→ 0, (28)

sup
Θda

∣∣∣∣∣∣[ϒ(d)G(1)(d)ϒ(d)
]−1 ∣∣∣∣∣∣< ∞, (29)

inf
Nd(ε)∩Θda

[
logdet

[
ϒ(d)G(1)(d)ϒ(d)G(1)(d0)−1

]
+ Φa(θ, l)

]
≥ 0, and (30)
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lim
T→∞

inf
Nd(ε)∩Θda

[u(d)−Φb(d, l)] > 0. (31)

These conditions correspond to (7.5) - (7.8) in Robinson (2008b).

The proof of (28) follows from observing that

∣∣∣∣∣∣ 1
m− l + 1

m

∑
j=l

Re
[
Λ j(d)BItri

y (λ j)B′Λ j(d)∗
]∣∣∣∣∣∣

=
∣∣∣∣∣∣ 1

m− l + 1

m

∑
j=l

Re
[
Λ j(d)B(Itri

x (λ j)+ Itri
xµ (λ j)+ Itri

µx (λ j)+ Itri
µ (λ j))B′Λ j(d)∗

]∣∣∣∣∣∣.
Now,

1
m− l + 1

m

∑
j=l

Re
[
Λ j(d)BItri

µ (λ j)B′Λ j(d)∗
]

=OP

 1
m

(
δM

T

)2
(

da+db
2 − 1

2

)
=oP(1).

In addition to this we have because ||Iµx(λ j)||2 = Iµ(λ j)Ix(λ j)∣∣∣∣∣∣ 1
m− l + 1

m

∑
j=l

Re
[
Λ j(d)BItri

µx (λ j)B′Λ j(d)∗
]∣∣∣∣∣∣

≤ 1
m− l + 1

m

∑
j=l

∣∣∣∣∣∣Re
[
Λ j(d)BItri

µx (λ j)B′Λ j(d)∗
]∣∣∣∣∣∣

≤ 1
m− l + 1

m

∑
j=l

(
Re
[
Λ j(d)BItri

x (λ j)B′Λ j(d)∗
]) 1

2

·
(
Re
[
Λ j(d)BItri

µ (λ j)B′Λ j(d)∗
]) 1

2

≤

(
1

m− l + 1

m

∑
j=l

Re
[
Λ j(d)BItri

x (λ j)B′Λ j(d)∗
]) 1

2

︸ ︷︷ ︸
OP(1)

·

(
1

m− l + 1

m

∑
j=l

Re
[
Λ j(d)BItri

µ (λ j)B′Λ j(d)∗
]) 1

2

︸ ︷︷ ︸
OP(1)

.

Applying now the same arguments as in the proof of (17) in Shimotsu (2012) gives (28).

Also the proof of (29), (30) and (31) is equal to Shimotsu (2012) proving his Equations (18),

(19) and (20).

We proceed to show (27). Define ĝ(i)
k1k2

similarly to Robinson (2008b) but using 1
m−l+1 ∑

m
j=l and

setting τ = (ζb−ζa) π

2 and γ0 = (d0
b −d0

a) π

2 . Let further

α̂a =
(

ĝ(2)
aa ĝ(1)

bb −2ĝ(1)
ab ĝ(2)

ab /det(Ĝ(1)(d)
)
, and

α̂b =
(

ĝ(3)
aa ĝ(1)

bb − (ĝ(2)
ab )2)/det(Ĝ(1)(d)

)
.
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Define g(i)
k1k2

, the population counterpart of ĝ(i)
k1k2

, analogously to g(1)
k1k2

: for example,

g(2)
ab = g(2)

ba =
1
l

ωbb cosγ

∫ 1

l
xda−d0

b+ζbdx, and

g(3)
aa =

1
l

ωbb

∫ 1

l
x2(da−d0

b )dx,

where γ = (db−da) π

2 .

Using summation by parts and Lemma 1(b) of Shimotsu (2012), we obtain

sup
Θd

|ĝ(i)
k1k2
−g(i)

k1k2
| P−→ 0

for i = 1,2,3, k1,k2 = a,b as T → ∞.

Rewrite Uβ(d) = logQ(bn(β))−Φa(d, l)+Φb(d, l), where Q(s) = 1+ â1s+ â2s2 and bn(β) = λ
−ν0

j (β0−
β). Define

αa =
(

g(2)
aa g(1)

bb −2g(1)
ab g(2)

ab /det(G(1)(d)
)

and

αb =
(

g(3)
aa g(1)

bb − (g(2)
ab )2)/det(G(1)(d)

)
.

Following Robinson (2008b), the probability in (27) is bounded by, with ρ = supΘd
|Φa(d, l)−

Φb(d, l)|< ∞,

P

(
log

[
1−

(
sup
Θd

|α̂a|
ε

+ inf
Θd

|α̂b|
ε2

)]
≤ ρ

)
+ P

(
sup
Θd

|α̂a|
2|α̂b|

>
1
ε

)

≤ 2P

(
sup
Θd

|α̂a−aa|+
2
ε

sup
Θd

|α̂b−αb|+ ερ≥ 1
ε

inf
Θd

αb− sup
Θd

|αa|

)
,

which has an additional term ερ compared to (7.13) in Robinson (2008b). (27) follows now

exactly as in Shimotsu (2012).

It remains to show (25). Write

R(θ)−R(θ
0) = U∗d (d)+U∗

β
(θ),

where

U∗d (d) = log det
[
Ξ(d)Ĝ(1)(d)Ξ(d)Ĝ(1)(d0)−1

]
−2(ζa + ζb)

1
m− l + 1

m

∑
j=l

log λ j

and

U∗
β
(θ) = log det[Ω̂tri∗(θ)Ĝ(1)(d)−1] = Uβ(θ)+ Φa(d, l)−Φb(d, l).

Then

P

(
inf

Nβ(ε−1)( T
m )ν0

)×Θd

U∗
β
(θ)≤ 0

)
→ 0
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follows from the proof of (27), so it suffices to show

P
(

inf
Θdb

U∗d (d)≤ 0
)
→ 0

Rewrite U∗d (d) as

U∗d (d) = logdet D̂(d)− logdet D̂(d0),

where

D̂(d) =
1

m− l + 1

m

∑
j=l


(

j
q

)2ζa
haa j

(
j
q

)ζa+ζb
Re
(

ei(π−λ j)
(ζb−ζa)

2 hab j

)
(

j
q

)ζa+ζb
Re
(

ei(π−λ j)
(ζb−ζa)

2 hab j

) (
j
q

)2ζb
hbb j


and

q = exp

(
1

m− l + 1

m

∑
j=l

log j

)

Define K(d) as D̂(d) but hk1k2 j is replaced with ωk1k2 .

Now,

sup
Θdb

|D(d)−K(d)| P→ 0

follows from Lemma 1 of Shimotsu (2010) and the proof of Theorem 1 of Shimotsu (2007).

Furthermore, it follows from Shimotsu (2007) and Shimotsu (2012) that there exists an ε∈ (0,0.1)

and l < m such that

inf
Θdb

detK(d)≥ (1 + ε)detG0 + o(1).

Therefore,

det D̂(d)≥ (1 + ε)detG0 + o(1).

Since

det D̂(d0) = det Ĝ(1)(d0) = detΩ
0 + oP(1)

from (28), we establish (25).

Proof of Theorem 5:

θ̂ has now the stated limiting distribution if for any θ̃ such that θ̃−θ0 = OP(m−1/2),

√
m(∆T )−1 dR(θ0)

dθ
|θ0

d⇒ N(0,Ξ)

and
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(∆T )−1 d2R(θ̃)

dθdθ
′ (∆T )−1 P→ Ξ.

For the score vector approximation denote by sk(θ) the k-th element of dR(θ)
dθ

and by Ei j the

matrix of zeros where the i j-th element has been replaced by a one. Following exactly the lines

of Robinson (2008b), Theorem 4 we have that

s1(θ
0) = −tr

1
m− l + 1

m

∑
j=l

λ
d0

b−d0
a

j (E12Re[Λ j(d0)B0Itri
y (λ j)B0′

Λ j(d0)∗]eiπ(db−da)/2

+Re[Λ j(d0)B0Itri
x (λ j)B0′

Λ j(d0)∗]E21e−iπ(db−da)/2)Ĝ(d0)−1

= −tr
1

m− l + 1

m

∑
j=l

λ
d0

b−d0
a

j (E12Re[Λ j(d0)B0Itri
y (λ j)B0′

Λ j(d0)∗]eiπ(db−da)/2

+Re[Λ j(d0)B0Itri
x (λ j)B0′

Λ j(d0)∗]E21e−iπ(db−da)/2)Ĝ(d0)−1 + oP(1),

s2(θ
0) = itr

[
1

m− l + 1

m

∑
j=l

(Re[Λ j(d0)B0Itri
y (λ j)B0′

Λ j(d0)∗]E22

−E22Re[Λ j(d0)B0Itri
y (λ j)B0′

Λ j(d0)∗])Ĝ(d0)−1
]

= itr
[

1
m− l + 1

m

∑
j=l

(Re[Λ j(d0)B0Itri
x (λ j)B0′

Λ j(d0)∗]E22

−E22Re[Λ j(d0)B0Itri
x (λ j)B0′

Λ j(d0)∗])Ĝ(d0)−1
]

+ oP(1),

s2+k(θ
0) = tr

1
m− l + 1

m

∑
j=l

(logλ j−
1

m− l + 1

m

∑
j=l

logλ j)

(EkkRe[Λ j(d0)B0Itri
y (λ j)B0′

Λ j(d0)∗]+ Re[Λ j(d0)B0Itri
y (λ j)B0′

Λ j(d0)∗]Ekk)Ĝ(d0)−1

= tr
1

m− l + 1

m

∑
j=l

(logλ j−
1

m− l + 1

m

∑
j=l

logλ j)

(EkkRe[Λ j(d0)B0Itri
x (λ j)B0′

Λ j(d0)∗]+ Re[Λ j(d0)B0Itri
x (λ j)B0′

Λ j(d0)∗]Ekk)Ĝ(d0)−1,

for k = 1,2 and by the same arguments as in the consistency proof. The score vector approxi-

mation follows now directly as in Robinson (2008b).

The Hessian approximation is also similar to the arguments in Robinson (2008b) and therefore

omitted here.
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