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Abstract

In this paper, test procedures for no fractional cointegration against possible breaks

in the persistence structure of a fractional cointegrating relationship are introduced.

The tests proposed are based on the supremum of the Hassler and Breitung (2006)

test statistic for no cointegration over possible breakpoints in the long-run equilibrium.

We show that the new tests correctly standardized converge to the supremum of a chi-

squared distribution, and that this convergence is uniform. An in-depth Monte Carlo

analysis provides results on the finite sample performance of our tests. We then use the

new procedures to investigate whether there was a dissolution of fractional cointegrating

relationships between benchmark government bonds of ten EMU countries (Spain, Italy,

Portugal, Ireland, Greece, Belgium, Austria, Finland, the Netherlands and France) and

Germany with the beginning of the European debt crisis.
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1 Introduction

Since the seminal works of Engle and Granger (1987) and Johansen (1988) coin-

tegration testing has become an important topic of research, both theoretically as well

as empirically. The equilibrium relationship between economic and financial variables

postulated by many economic theories is typically assumed to be constant over time,

i.e., cointegrating relationships do not change. However, this assumption may be too

restrictive.

A constant long-run equilibrium may be questionable in light of the growing empir-

ical evidence that economic and financial time series may display persistence changes

over time (see, inter alia, Kim (2000), Kim et al. (2002), Busetti and Taylor (2004), and

Harvey et al. (2006), for tests when the order of integration is integer; and Giraitis and

Leipus (1994), Beran and Terrin (1996), Beran and Terrin (1999), Sibbertsen and Kruse

(2009), Hassler and Scheithauer (2011), Hassler and Meller (2014), and Martins and Ro-

drigues (2014), for tests when the order of integration is some real number). Hence, it is

natural to expect that changes in the persistence of economic and financial time series

may also originate changes in the long-run equilibrium. This has been substantiated

in recent years by a vast literature documenting changes in the historical behaviour of

economic and financial variables; see among others, McConnell and Perez-Quiros (2000),

Herrera and Pesavento (2005), Cecchetti et al. (2006), Kang et al. (2009) and Halunga

et al. (2009).

The impact of structural breaks in the deterministic kernels on cointegration has

been widely analysed (see e.g. Hansen (1992), Quintos and Phillips (1993), Hao (1996),

Andrews et al. (1996), Bai and Perron (1998), Kuo (1998), Inoue (1999), Johansen et al.

(2000), and Lütkepohl et al. (2003), but less attention has been given to the impact of

changes in the actual long-run equilibrium (see Martins and Rodrigues (2018)). The

focus of this paper is to propose new tests capable of detecting changes in fractional

cointegration relationships. We introduce procedures designed to detect changes in the

long-run equilibrium between macroeconomic or financial variables based on rolling,

recursive forward and recursive reverse estimation of the Hassler and Breitung (2006)

test, in the spirit of the approaches proposed by e.g. Davidson and Monticini (2010).

Asymptotic results are derived and the performance of the new tests evaluated in an

in-depth Monte Carlo exercise. In particular, special attention is devoted to the case of

unknown orders of integration of the variables involved due to its empirical relevance.

Furthermore, we apply the new test statistics to the government bond market of the

European Monetary Union (EMU) finding evidence of segmented fractional cointegration

with breaks at the beginning of the European debt crisis.

This paper is organized as follows. Section 2 presents the model specification and
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assumptions; Section 3 introduces the tests for no cointegration under persistence breaks,

a break point estimator, and corresponding asymptotic theory; Section 4 discusses the

results of an in-depth Monte Carlo analysis on the finite sample properties of the new

tests; Section 5 illustrates the application of the new procedures to the EMU government

bond market; Section 6 concludes the paper and finally, an appendix collects all the

proofs.

2 Model Specification and Assumptions

Consider an m-dimensional process xt integrated of order d, I(d), and let yt be an

one-dimensional I(d) process as well. The processes xt and yt are said to be fractionally

cointegrated if, considering the regression,

yt = x′t β+ut, t = 1, . . . ,T, (1)

ut is integrated of order I(d−b) with b > 0.

In what follows the focus is on testing the null hypothesis of no fractional cointegra-

tion, H0 : b = 0. The usual alternative in this setting is to have fractional cointegration

over the whole range of observations, H1 : b > 0. However, we are interested in testing for

segmented fractional cointegration. This means that the fractional cointegration rela-

tionship may hold only in subsamples of the period under analysis. Therefore, our alter-

native hypothesis is H1 : bt > 0, for t = ⌊λ1T ⌋+1, . . . , ⌊λ2T ⌋ and bt = 0 elsewhere,

with 0≤ λ1 < λ2 ≤ 1.

The test statistics that will be proposed are based on the approach of Hassler and

Breitung (2006), who provide a regression-based test for the null of no fractional coin-

tegration on the residuals, ût, of a model as in (1). Before presenting the relevant test

statistics let us make the following assumptions:

Assumption 1: Let yt and xt be fractionally integrated of orders d1 and d2, respectively

with yt = 0 and xt = 0 for t ≤ 0.

Assumption 2: The vector v′t := (v1,t,v′2,t) = (∆d1
+ yt, ∆

d2
+ x

′
t), is a stationary vector au-

toregressive process of order p of the form

vt = A1vt−1+ · · ·+Apvt−p+εt (2)

where ∆d1
+ yt := (1−L)d1ytI(t > 0), ∆d2

+ xt := (1−L)d2xtI(t > 0), I(·) is the indicator function,

L denotes the usual backshift or lag operator and the error process εt is assumed to be

independent and identically distributed (iid) with mean zero and covariance matrix,
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3 Testing for no cointegration under persistence breaks

As in Hassler and Breitung (2006) the cointegrating vector β is not identified under

the null hypothesis of no cointegration. Thus, considering that d1 = d2 = d, we define

the following regression model,

∆
d
+yt = ∆

d
+x
′
t β+ et, β := Σ−1

22σ21 (3)

where et := v1,t −v
′
2,tΣ
−1
22σ21.

The LM test for no cointegration is then applied to the OLS residuals, êt, obtained

from (3), i.e.,

∆
d
+yt = ∆

d
+x
′
tβ̂+ êt

where

êt := et −
T

∑

t=1

v
′

2,tet




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T
∑
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v2,tv
′

2,t

















−1

v2,t.

Specifically, to implement the tests proposed by Hassler and Breitung (2006) and

Demetrescu et al. (2008), which is the approach followed in this paper, a regression

framework is considered, viz.,

êt = φê
∗
t−1+

p
∑

i=1

γiêt−i+at, t = 1, ...,T, (4)

where ê∗t−1 :=
∑t−1

j=1 j−1êt− j and at is a martingale difference sequence. Equation (4) is

used to test the null H0 : φ = 0 (b = 0) against the alternative H1 : φ < 0 (b > 0).

Remark 3.1: Under local alternatives of the form H1 : b = c/
√

T with a fixed c > 0, it

can be shown that φ = −c/
√

T +O
(

T−1
)

and that {at} is a fractionally integrated noise

component. As a result, the heterogenous behavior of φ and the different stochastic prop-

erties of at provide a sound statistical basis to identify the order of fractional integration

of {êt}. Despite the apparent theoretical simplicity of this framework, the fact that ê∗t−1

converges in mean square sense to e∗∗t−1 :=
∑∞

j=1 j−1et− j,d under the null hypothesis and As-

sumption 1, with
{

e∗∗t−1

}

being a stationary linear process with non-absolutely summable

coefficients, is a source of major technical difficulties for the asymptotic analysis in this

context; see e.g. Hassler et al. (2009). �
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Remark 3.2: Demetrescu et al. (2008) and Hassler et al. (2009) derive the asymptotic

theory of the fractional integration tests under least-squares (LS) estimation of the

set of parameters κ :=
(

φ,γ1, ...,γp

)′
of a regression as in (4), and show that these are√

T -consistency and asymptotic normal under fairly general conditions. As a result,

in a conventional setting as in (4) H0 : φ = 0 can be tested by means of a standard t-

ratio, or some measurable transformation such as its squares. If our assumptions are

strengthened such that at ∼ iidN
(

0,σ2
)

, the specific harmonic weighting upon which
{

e∗t−1

}

is constructed in (4) also ensures efficient testing. �

In this paper we concentrate on the case of iid errors, et, (p = 0 in (4)) although it

is also possible to allow for serial correlation in the innovations. Following Demetrescu

et al. (2008) this can be accommodated through parametric augmentation as in (4)

allowing for p > 0.

3.1 The Test Statistics

As we are interested in testing for no fractional cointegration against the alternative

of segmental fractional cointegration, we apply the Hassler and Breitung (2006) test on

a subinterval defined by the truncation points λ1 and λ2 with 0≤ λ1 < λ2 ≤ 1. Thus, for

λ1 and λ2 fixed we consider the statistic,

t(ê(λ1,λ2)) =

√
⌊λ2T ⌋− ⌊λ1T ⌋

∑⌊λ2T ⌋
t=⌊λ1T ⌋+1 êt(λ1,λ2)ê∗t−1(λ1,λ2)

√

∑⌊λ2T ⌋
t=⌊λ1T ⌋+1 ê∗2t−1(λ1,λ2)

√

1
T−1

∑⌊λ2T ⌋
t=⌊λ1T ⌋+1 ê2

t (λ1,λ2)
(5)

where êt(λ1,λ2) are the subsample based residuals and ê∗t−1(λ1,λ2) the corresponding

harmonic weighted residuals as defined in (4).

However, since the breakpoints, λ1 and λ2, are usually unknown we adopt the split

sample testing approach proposed by Davidson and Monticini (2010), and define the

following sets on which the tests will be performed:

ΛS =

{{

0,
1
2

}

,

{

1
2
,1

}}

(6)

Λ0 f = {{0, s} : s ∈ [λ0,1]} (7)

Λ0b = {{s,1} : s ∈ [0,1−λ0]} (8)

Λ0R = {{s, s+λ0} : s ∈ [0,1−λ0]} (9)

where ΛS represents a simple split sample with just two elements; Λ0 f and Λ0b denote

forward- and backward-running incremental samples, respectively of minimum length

⌊λ0T ⌋ and maximum length T; Λ0R defines a rolling sample of fixed length ⌊λ0T ⌋, and
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finally λ0 ∈ (0,1) is fixed and needs to be chosen by the practitioner. Davidson and

Monticini (2010) consider two additional sets, namely Λ∗S = ΛS ∪{0,1} and Λ∗0R = Λ0R∪
{0,1}.

Therefore, considering the sets in (6) to (9), our proposed test procedures against

breaks in the fractional cointegration relation are the split sample tests,

TS := max
{λ1,λ2}∈ΛS

t2(ê(λ1,λ2)); (10)

T ∗S := max
{λ1,λ2}∈Λ∗S

t2(ê(λ1,λ2)); (11)

the incremental (recursive) tests

TI f (λ) := max
λ0≤λ≤1

t2(ê(0,λ)); (12)

TIb(λ) := max
0≤λ≤1−λ0

t2(ê(λ,1)); (13)

the rolling sample test

TR(λ) := max
0≤λ≤1−λ0

t2(ê(λ,λ+λ0)); (14)

T ∗R(λ) := max
{λ1,λ2}∈Λ∗0R

t2(ê(λ1,λ2)). (15)

We can state these statistics in general form as,

TK(λ1,λ2) := max
λ1∈Λ1,λ2∈Λ2

t2(ê(λ1,λ2)), K = S ,S ∗, I f , Ib,R,R
⋆. (16)

3.2 Asymptotic Results

To characterize the asymptotic behavior of the test statistics in (10) - (15), con-

sider first Theorem 1 provided next, which states the asymptotic normality of the test

statistic in (5) and which is the main building block of the test statistics TK(λ1,λ2), K =

S ,S ∗, I f , Ib,R,R⋆.

Theorem 1. Assuming that the data is generated from (1) and that Assumptions 1 and

2 hold, it follows under the null hypothesis of no fractional cointegration that, as T →∞,

t(ê(λ1,λ2))⇒ N(0,1), (17)

where ⇒ denotes weak convergence.

Hence, based on the result of Theorem 1 we can now state the limit results for the

test statistics introduced in (10) - (15).
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Theorem 2. Assuming that the data is generated from (1) and that Assumptions 1 and

2 hold, under the null hypothesis of no fractional cointegration it follows, as T →∞, that

TK(λ1,λ2)⇒ sup
λ1∈Λ1,λ2∈Λ2

χ2
1, K = S ,S ∗, I f , Ib,R,R

∗. (18)

As a next step we provide an estimator of the break point τ under the alterna-

tive. The estimator basically consists of minimizing the sum of squared residuals of a

regression as in (3). Thus, our break point estimator is

τ̂ = arg in f
τ∈∆

[τT ]−2d̂
[τT ]
∑

t=1

ê2
t (τ) (19)

where, ∆ := (δ; (1−δ)) and 0< δ < 0.5 is an interval eliminating the first and last obser-

vations to have enough observations at hand for the break point estimation. For this

statistic, the following consistency result can be stated:

Theorem 3. Assuming that the break is from the cointegrated subsample to the non-

cointegrated subsample and that Assumptions 1 and 2 hold, as T →∞, than

τ̂→ τ0. (20)

where τ0 denotes the true break fraction.

Remark 3.3: If the break is from the non-cointegrated to the cointegrated sample

then the reversed sum of squared residuals, from T to ⌊τT ⌋, can be used to consistently

estimate the break fraction τ0. �

4 Monte Carlo Study

In this Section, we analyze the finite-sample properties of the residual-based tests

for segmented fractional cointegration introduced above by means of Monte Carlo simu-

lation. The data generation process (DGP) considered for the empirical size and power

analysis is

yt = xt + et, t = 1, ...,T (21)

xt = xt−1+ vt, (22)

(1−L)(1−bt)et = at, (23)

- 7 -



where









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

vt

at












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

,


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













1 ρ

ρ 1


















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


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



.

For ρ = 0, xt is strictly exogenous whereas for ρ , 0, xt is correlated with et (i.e. endoge-

nous).

For implementation of the tests we compute the OLS residuals,

êt = yt − α̂− β̂xt, (24)

run the test regression in (4) on these residuals (êt) and compute the different test

statistics introduced in the previous section, i.e., T ∗S , TI f (λ0), TIb(λ0), and TR(λ0), as

well as the full sample test proposed by Hassler and Breitung (2006), which we denote

as THB. All results reported are for a 5% significance level and are based on 5000 Monte

Carlo replications. We present results for sample sizes T = {250,500}.
For benchmarking purposes, we consider the test statistics computed either for iid

innovations as in Breitung and Hassler (2002) or using Eicker-White’s correction against

heteroskedasticity as in Demetrescu et al. (2008).

To compute the critical values for the tests we generate data from

yt = xt + et, t = 1, ...,T (25)

(1−L)d1 xt = vt, (26)

(1−L)d1et = at, (27)

with d1 = {0.5,0.6, ...,1} and computed the critical values as the average of the critical

values obtained for each d1 considered at a specific significance level (see Table 1).

Table 1: Critical Values for Subsample Tests

T ∗S TI f (λ0) TIb(λ0) TR(λ0)

T = 250

1% 9.438 7.722 7.699 7.172

5% 5.960 4.458 4.471 4.112

10% 4.470 3.130 3.133 2.867

T = 500

1% 8.888 7.387 7.405 6.862

5% 5.737 4.293 4.296 3.955

10% 4.381 3.000 3.006 2.767

Note: For implementation of the tests we considered λ0 = 0.5 and all results are based on
5000 Monte Carlo replications.
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4.1 Empirical rejection frequencies

For the analysis of the finite sample rejection frequencies under the null and alter-

native hypothesis, we consider three experiments:

Experiment 1: Constant cointegration relation over the whole sample.

Experiment 2: Spurious regime in the first part of the sample and a fractional cointe-

grated regime in the second part, i.e.,



















bt = 0 f or t = 1, ..., ⌊λT ⌋

bt > 0 f or t = ⌊λT ⌋+1, ...,T
. (28)

Experiment 3: Fractional cointegrated regime in the first part of the sample and a

spurious regime in the second part of the sample, i.e.,



















bt > 0 f or t = 1, ..., ⌊λT ⌋

bt = 0 f or t = ⌊λT ⌋+1, ...,T
(29)

with λ ∈ {0.3,0.5,0.7} in both experiments 2 and 3.

In the case of Experiment 1, data is generated from (21) - (23), where yt and xt

are both I(1) variables and bt = b = {0,0.05,0.10, ...,0.50} which allows us to look at the

empirical rejection frequencies under the null hypothesis (empirical size, b = 0) as well

as under the alternative (finite sample power, bt > 0). The first observation we can make

from the upper panel of Table 2 is that for T = 250, with the exception of THB (which

displays an empirical size of 8.4%), all other tests have acceptable finite sample size

(ranging between 5.2% and 6.1%). As the sample size increases to T = 500 all tests

improve in size (for THB the empirical rejection frequency under the null hypothesis

reduces to 6.4%whereas for the other subsample tests it ranges between 4.5%and 4.9%).

Also in terms of power an improvement is observed. In the lower panel with endogenous

xt, we observe lower empirical sizes for T = 250 compared to the exogenous case and

slightly higher sizes for T = 500. The power is always better than with exogenous xt.

Overall, all tests are relatively robust to endogeneity. Note, that of the set of sequential

tests proposed, the best performing in both cases are the recursive tests, TI f (λ0) and

TIb(λ0), although, as expected, THB displays in the case of Experiment 1 the overall best

performance.
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Table 2: Rejection frequencies of tests - Experiment 1 (λ0 = 0.5)

ρ = 0

T = 250 T = 500

b T ∗S TI f (λ0) TIb(λ0) TR(λ0) THB T ∗S TI f (λ0) TIb(λ0) TR(λ0) THB

0.00 0.0612 0.0612 0.0580 0.0524 0.0842 0.0492 0.0460 0.0450 0.0480 0.0640

0.05 0.1538 0.1826 0.1812 0.1154 0.2256 0.2084 0.2518 0.2558 0.1580 0.3066

0.10 0.3844 0.4448 0.4482 0.2584 0.5144 0.6246 0.6954 0.6942 0.4314 0.7516

0.15 0.6908 0.7560 0.7576 0.4856 0.8110 0.9322 0.9590 0.9590 0.7582 0.9698

0.20 0.8990 0.9386 0.9390 0.6970 0.9608 0.9958 0.9982 0.9982 0.9436 0.9992

0.25 0.9878 0.9950 0.9952 0.8792 0.9968 0.9998 1 1 0.9950 1

0.30 0.9992 1 0.9998 0.9574 1 1 1 1 0.9992 1

0.35 0.9998 1 1 0.9920 1 1 1 1 1 1

0.40 1 1 1 0.9984 1 1 1 1 1 1

0.45 1 1 1 0.9998 1 1 1 1 1 1

0.50 1 1 1 1 1 1 1 1 1 1

ρ = 0.8

T = 250 T = 500

b T ∗S TI f (λ0) TIb(λ0) TR(λ0) THB T ∗S TI f (λ0) TIb(λ0) TR(λ0) THB

0.00 0.0482 0.0538 0.0512 0.0394 0.0804 0.0516 0.0550 0.0558 0.0472 0.0664

0.05 0.1592 0.1994 0.2050 0.0948 0.2636 0.3144 0.3746 0.3652 0.1492 0.4034

0.10 0.4546 0.5468 0.5488 0.2172 0.6258 0.7966 0.8526 0.8502 0.4262 0.8622

0.15 0.7984 0.8718 0.8684 0.4186 0.9074 0.9834 0.9888 0.9896 0.7478 0.9898

0.20 0.9646 0.9806 0.9796 0.6300 0.9876 0.9996 0.9998 0.9998 0.9386 0.9998

0.25 0.9964 0.9992 0.9986 0.7892 0.9996 1 1 1 0.9882 1

0.30 0.9998 0.9998 1 0.9150 1 1 1 1 0.9986 1

0.35 1 1 1 0.9674 1 1 1 1 0.9996 1

0.40 1 1 1 0.9860 1 1 1 1 1 1

0.45 1 1 1 0.9942 1 1 1 1 1 1

0.50 1 1 1 0.9990 1 1 1 1 1 1
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In the case of Experiment 2, the sample is divided into two sub-periods where in

the first sub-period there is no cointegration (b = 0) and in the second the variables are

cointegrated (b > 0). We allow the change into the cointegrated regime to be early in the

sample (λ= 0.3), in the middle of the sample (λ= 0.5) and late in the sample (λ= 0.7). We

consider a similar exercise in Experiment 3 except that the first sub-period corresponds

to cointegration (b > 0) and the second to a spurious regression (b = 0). From Table 3 we

observe first that the overall best performing test of the sequential tests introduced is

T ∗S followed by TI f (λ0). The overall test THB, although slightly oversized, also displays

interesting power performance. The good behavior of T ∗S is clearly observable in the

larger sample (T = 500) where it stands out particularly for λ = 0.5 and λ = 0.7. For

λ = 0.3 the difference of T ∗S with regards to THB is not as marked.

Table 4 reports results for the case where there is cointegration in the first sub-

period and in the second sub-period the results are spurious. In this case the rolling

approach TR(λ0) displays interesting behavior, particularly for bt > 0.15 and T = 250and

for bt > 0.1 when T = 500. The T ∗S statistic also displays good power performance.1

1We have also performed simulations with EW corrected statistics, however since the results are quali-
tatively similar to those reported in Tables 2 - 4 we have decided not to include them in the paper for
the sake of space. These can however be obtained from the authors.
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Table 3: Rejection frequencies of tests - Experiment 2 (λ0 = 0.5)

T = 250 T = 500

b T ∗S TI f (λ0) TIb(λ0) TR(λ0) THB T ∗S TI f (λ0) TIb(λ0) TR(λ0) THB

λ = 0.3

0 0.055 0.058 0.061 0.054 0.076 0.058 0.055 0.056 0.056 0.065

0.05 0.079 0.077 0.079 0.051 0.104 0.082 0.083 0.083 0.057 0.096

0.10 0.101 0.100 0.103 0.050 0.128 0.133 0.125 0.136 0.052 0.141

0.15 0.134 0.129 0.144 0.051 0.166 0.189 0.173 0.182 0.053 0.191

0.20 0.161 0.151 0.167 0.054 0.189 0.254 0.222 0.238 0.051 0.243

0.25 0.202 0.178 0.194 0.053 0.221 0.311 0.265 0.272 0.052 0.293

0.30 0.237 0.210 0.230 0.050 0.257 0.375 0.325 0.339 0.050 0.351

0.35 0.281 0.247 0.262 0.051 0.298 0.453 0.393 0.410 0.052 0.420

0.40 0.310 0.275 0.293 0.056 0.324 0.499 0.424 0.437 0.052 0.454

0.45 0.353 0.307 0.313 0.049 0.359 0.537 0.467 0.473 0.058 0.493

0.50 0.397 0.341 0.353 0.055 0.393 0.594 0.514 0.527 0.052 0.543

λ = 0.5

0 0.051 0.060 0.060 0.048 0.078 0.054 0.059 0.057 0.054 0.069

0.05 0.092 0.094 0.099 0.063 0.126 0.114 0.115 0.118 0.090 0.132

0.10 0.159 0.147 0.155 0.091 0.182 0.279 0.224 0.239 0.164 0.248

0.15 0.269 0.207 0.227 0.142 0.260 0.474 0.331 0.345 0.228 0.361

0.20 0.411 0.285 0.298 0.204 0.336 0.658 0.426 0.436 0.283 0.454

0.25 0.530 0.345 0.358 0.240 0.400 0.775 0.532 0.531 0.344 0.560

0.30 0.640 0.409 0.418 0.267 0.463 0.832 0.593 0.594 0.373 0.619

0.35 0.727 0.462 0.473 0.297 0.518 0.871 0.657 0.654 0.404 0.676

0.40 0.770 0.515 0.518 0.325 0.565 0.894 0.707 0.700 0.425 0.727

0.45 0.811 0.565 0.566 0.328 0.618 0.906 0.739 0.732 0.432 0.757

0.50 0.832 0.611 0.612 0.348 0.653 0.924 0.766 0.766 0.452 0.783

λ = 0.7

0 0.060 0.062 0.058 0.053 0.085 0.056 0.056 0.058 0.054 0.066

0.05 0.114 0.128 0.133 0.072 0.166 0.154 0.167 0.178 0.080 0.188

0.10 0.207 0.216 0.232 0.090 0.266 0.342 0.360 0.364 0.119 0.386

0.15 0.346 0.344 0.347 0.105 0.398 0.583 0.546 0.538 0.137 0.572

0.20 0.509 0.465 0.467 0.125 0.518 0.739 0.657 0.646 0.181 0.679

0.25 0.625 0.534 0.542 0.145 0.592 0.847 0.741 0.724 0.210 0.757

0.30 0.726 0.619 0.613 0.159 0.660 0.887 0.780 0.766 0.239 0.796

0.35 0.798 0.669 0.664 0.177 0.714 0.912 0.818 0.810 0.279 0.831

0.40 0.837 0.710 0.700 0.197 0.738 0.927 0.837 0.825 0.311 0.850

0.45 0.871 0.742 0.735 0.227 0.774 0.933 0.843 0.832 0.336 0.854

0.50 0.884 0.761 0.751 0.237 0.789 0.946 0.868 0.854 0.369 0.878
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Table 4: Rejection frequencies of tests - Experiment 3 (λ0 = 0.5)

T = 250 T = 500

b T ∗S TI f (λ0) TIb(λ0) TR(λ0) THB T ∗S TI f (λ0) TIb(λ0) TR(λ0) THB

λ = 0.3

0 0.061 0.061 0.058 0.052 0.084 0.058 0.055 0.054 0.050 0.076

0.05 0.111 0.137 0.128 0.115 0.171 0.152 0.169 0.165 0.162 0.208

0.10 0.257 0.273 0.270 0.258 0.326 0.399 0.401 0.394 0.416 0.462

0.15 0.438 0.432 0.426 0.479 0.504 0.709 0.661 0.655 0.753 0.717

0.20 0.653 0.617 0.603 0.682 0.677 0.915 0.832 0.832 0.934 0.868

0.25 0.830 0.741 0.735 0.863 0.788 0.980 0.910 0.908 0.988 0.929

0.30 0.927 0.828 0.819 0.940 0.864 0.995 0.939 0.937 0.998 0.954

0.35 0.962 0.873 0.865 0.978 0.899 0.998 0.958 0.954 0.998 0.966

0.40 0.986 0.908 0.902 0.993 0.933 1.000 0.974 0.973 1.000 0.979

0.45 0.995 0.926 0.920 0.997 0.944 0.999 0.982 0.980 1.000 0.986

0.50 0.997 0.948 0.943 0.998 0.961 0.999 0.981 0.979 1.000 0.986

λ = 0.5

0 0.058 0.059 0.061 0.057 0.081 0.049 0.048 0.050 0.051 0.069

0.05 0.097 0.095 0.093 0.230 0.123 0.115 0.112 0.114 0.360 0.152

0.10 0.193 0.169 0.163 0.509 0.222 0.311 0.237 0.229 0.686 0.288

0.15 0.350 0.250 0.243 0.726 0.305 0.591 0.365 0.363 0.879 0.425

0.20 0.529 0.344 0.334 0.845 0.406 0.823 0.495 0.494 0.962 0.556

0.25 0.702 0.430 0.413 0.926 0.494 0.934 0.602 0.593 0.987 0.651

0.30 0.828 0.516 0.504 0.965 0.574 0.970 0.678 0.675 0.997 0.724

0.35 0.888 0.560 0.551 0.983 0.623 0.980 0.752 0.746 0.996 0.789

0.40 0.937 0.633 0.623 0.991 0.684 0.989 0.780 0.773 0.998 0.820

0.45 0.953 0.673 0.664 0.994 0.721 0.989 0.813 0.817 0.998 0.845

0.50 0.967 0.711 0.703 0.996 0.756 0.991 0.849 0.848 0.999 0.877

λ = 0.7

0 0.058 0.057 0.055 0.057 0.080 0.051 0.052 0.050 0.054 0.076

0.05 0.071 0.079 0.072 0.079 0.104 0.077 0.085 0.077 0.095 0.113

0.010 0.108 0.107 0.104 0.123 0.139 0.120 0.123 0.117 0.155 0.154

0.15 0.136 0.135 0.129 0.158 0.172 0.181 0.165 0.154 0.223 0.206

0.20 0.163 0.161 0.155 0.197 0.202 0.241 0.222 0.208 0.292 0.269

0.25 0.205 0.191 0.183 0.238 0.245 0.285 0.262 0.250 0.340 0.314

0.30 0.230 0.217 0.212 0.268 0.272 0.351 0.310 0.296 0.411 0.357

0.35 0.263 0.249 0.241 0.306 0.306 0.402 0.359 0.353 0.456 0.418

0.40 0.291 0.274 0.265 0.341 0.328 0.436 0.398 0.388 0.485 0.462

0.45 0.347 0.321 0.314 0.386 0.376 0.496 0.447 0.444 0.543 0.504

0.50 0.368 0.341 0.332 0.413 0.401 0.527 0.484 0.482 0.566 0.543
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We also apply the break point estimator to data from Experiment 3 and residuals

from a regression without constant in order to detect a break from cointegration to no

cointegration. Table 5 shows the estimated break fraction for different choices of δ.

This choice does not have any influence on the results. Therefore for practical purposes,

a small δ is recommended in order to keep a large part of the data in the analysis.

With small b, there is a tendency to locate the break in the middle of the sample, but

the results improve as the cointegrating strength b increases and for the largest b the

accuracy is good. Hence, with strong cointegrating relations, the break point estimator

delivers reliable results. If there is permanent cointegration, the break is estimated at

the end of the admissible window. If the data is generated from Experiment 2, the

regression residuals are reversed before applying the break point estimator. The results

remain the same and are available upon request.

Table 5: Break point estimates with T = 1000and 5000Monte Carlo replications.

δ 0.05 0.1 0.15

b\λ 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

0.10 0.564 0.604 0.688 0.559 0.598 0.676 0.550 0.589 0.659

0.15 0.503 0.558 0.667 0.509 0.560 0.666 0.514 0.559 0.665

0.20 0.461 0.526 0.661 0.458 0.526 0.658 0.472 0.524 0.660

0.25 0.424 0.499 0.655 0.437 0.501 0.657 0.436 0.503 0.658

0.30 0.410 0.483 0.654 0.412 0.488 0.656 0.414 0.494 0.659

0.35 0.389 0.470 0.653 0.397 0.473 0.656 0.404 0.478 0.656

0.40 0.373 0.458 0.655 0.381 0.461 0.655 0.392 0.470 0.656

0.45 0.365 0.446 0.648 0.374 0.457 0.651 0.387 0.463 0.653

0.50 0.358 0.448 0.647 0.375 0.453 0.648 0.380 0.458 0.653

no break 0.938 0.890 0.842

5 Empirical Application

In this Section, we apply the tests introduced in Section 3 to benchmark government

bonds of countries that are part of the European Monetary Union (EMU). The analysis

is based on daily observations between 01.01.1999 and 08.08.2017 (about 4,800 observa-

tions per country) of 10-year-to-maturity benchmark government bonds of eleven EMU

countries (Spain, Italy, Portugal, Ireland, Greece, Belgium, Austria, Finland, the Nether-

lands, France and Germany). The data ist obtained from Thomson Reuters Eikon.

According to Leschinski et al. (2018), market integration requires the existence of

a (fractional) cointegrating relationship among the goods of the market under consider-

ation. Regarding the European bond market, it is generally accepted that the market

is integrated after the introduction of the Euro and prior to the EMU debt crisis or at
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Figure 1: Yields of EMU government bonds.
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least up to the subprime mortgage crisis (Baele et al. (2004), Ehrmann et al. (2011),

Pozzi and Wolswijk (2012), Christiansen (2014), and Ehrmann and Fratzscher (2017),

among others) so that we would expect fractional cointegration during this period. This

conclusion is supported by Figure 1 that shows how the bond yields co-move in the

beginning. When the crisis began in 2008-2010, they drift apart so that no market inte-

gration and no cointegration is assumed any longer. Therefore, it is likely that testing

for no cointegration over the full sample does not allow us to reject the null hypothesis.

However, with the new tests introduced in this paper we expect to be able to detect

cointegration with breaks in the cointegrating relationship in the sense that under the

alternative we have fractional cointegration in a certain subsample and no cointegration

elsewhere.

Table 6: p-values of ADF- and KPSS-tests.

ES IT PT IE GR BE AT FI NL FR GER

ADF 0.93 0.93 0.93 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93

KPSS 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

The order of integration of our data is unknown so that we apply unit root and

stationarity tests (Table 6). The ADF-test, augmented based on the Schwert’s rule and

including a drift, cannot reject the unit root and the KPSS-test rejects stationarity for

all countries leading to the conclusion that di = 1 for all countries’ yields. This might be

implausible from an economic perspective. However, the finite sample behavior suggests

a unit root which is consistent with results available in the literature on fractional
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cointegration, confer for example Chen and Hurvich (2003) and Nielsen (2010). The

cointegrating regressions are carried out in a bivariate setting where the yield of country

i, yit, is regressed on the German yield, yGER,t:

yit = β0+β1yGER,t + et, for i = 1, ...,10. (30)

The residuals obtained from the regressions in (30) are used for testing in the split,

incremental and rolling sample versions of the test where λ0 is set to 0.2 and 0.5, respec-

tively. The Hassler-Breitung test is applied to the full sample. In order to account for

autocorrelation, we augment the lagged regression (4) using the Schwert’s rule as sug-

gested in Demetrescu et al. (2008), and we use Eicker-White (EW) heteroscedasticity-

robust standard errors as it is more suitable in our empirical setting. The results are

given in Table 7 and bold numbers indicate rejection at the 5% significance level.

Table 7: Values of test statistic with λ0 = 0.2 and λ0 = 0.5 with EW heteroscedasticity-robust
standard errors, and parametric augmentation to correct for autocorrelation (Schwert’s rule).

THB T ∗S TI f (0.2) TIb(0.2) TR(0.2) TI f (0.5) TIb(0.5) TR(0.5)

ES 0.05 0.05 1.85 0.70 8.02 1.85 0.04 1.66

IT 0.31 0.31 2.51 1.88 15.31 2.51 0.79 1.87

PT 2.46 2.46 2.55 3.26 14.87 2.55 2.66 2.14

IE 0.04 0.04 4.90 4.09 28.71 4.90 0.09 2.65

GR 0.29 0.55 3.18 2.21 5.65 3.18 2.21 2.70

BE 0.45 1.67 8.30 2.20 15.68 8.30 0.66 6.52

AT 2.91 4.20 11.45 8.77 37.06 4.57 4.22 6.38

FI 3.43 28.03 33.84 5.98 24.43 29.30 5.00 28.92

NL 11.42 11.42 19.34 11.15 23.19 11.60 11.15 11.36

FR 2.91 2.91 11.99 5.53 11.92 11.99 5.45 9.18

The Hassler-Breitung test does not reject the null of no cointegration on the full

sample for all countries except for the Dutch yield, and the split sample test finds coin-

tegration between the German and Dutch and the German and Finnish yields. The

incremental tests with λ0 = 0.2 reject the null hypothesis for Austria, Finland, the

Netherlands and France in the backward-rolling window and additionally for Ireland

and Belgium in the forward-rolling window. Thus, segmented cointegration is found for

countries that were less affected by the financial crisis and no cointegration for those

more strongly affected. The rolling sample tests rejects the null of no cointegration

for all regression pairs. Overall, the results meet the expectation that the European

yields are not cointegrated over the whole period. With the new tests for segmented

cointegration, we find that the European yields were cointegrated in at least part of the

sample.

Davidson and Monticini (2010) recommend the use of λ0 = 0.5 because a break must
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occur in either the first half of the sample or the second. Nonetheless, choosing λ0 = 0.2

leads neither to disadvantages nor to advantages which was also confirmed in the Monte

Carlo exercise. With λ0 = 0.5, the results for the incremental tests are very similar to

those with λ0 = 0.2, but we get less rejections with the rolling sample test. This could

imply that a shorter period than 50% of the sample is fractionally cointegrated or, at

least, that the evidence for segmented fractional cointegration for the countries that

were most affected by the financial crisis is ambiguous.

The finding of segmented cointegration for the Netherlands does not contradict the

rejection of the Breitung-Hassler-test as it also has power, albeit less, in the presence of

segmented cointegration. The other way round, the tests for segmented cointegration

also have power if the cointegrating relation is permanent as they include the full sample

as well.

Table 8: Break date estimates with δ = 0.05.

ES IT PT IE GR

05.05.2010 24.05.2010 27.04.2010 28.04.2010 22.04.2010

15.08.2014∗

BE AT FI NL FR

21.11.2008 14.12.2001 06.12.2002 21.10.2002 21.11.2008

In order to gain a deeper understanding of the dynamics, we estimate the break

date with the break point estimator proposed in (19) based on the regression residuals

(without constant). We set δ= 0.05and impose a minimum length of ⌊0.1T ⌋ between the

sequentially estimated breaks. The results are given in Table 8. The breaks for Spain,

Italy, Portugal, Ireland and Greece are estimated in April and May of 2010, hence shortly

after the start of the European debt crisis. For France and Belgium we obtain the exact

same date in November 2008, i.e. two years earlier than for the previous countries. For

Austria, Finland and the Netherlands the breaks are located at the end of 2001 and

2002. We also look at reversed residuals in order to identify potential breaks from no

cointegration to cointegration that are indicated by an asterisk. There is one found for

Ireland implying that the Irish yield is cointegrated with the German one until 2010,

then the cointegrating relationship temporarily dissolves and reemerges in 2014.

If we consider the sample starting 1999 up to the first break, there is still evidence of

unit roots in the data and we find the breaks given in Table 9. As they are also ’forward’-

breaks implying the dissolution of cointegration, they contradict the first found break

dates. In the sample between the break date estimates, we do not find ’backward’-breaks

that would justify the first break, except for Italy. For Italy, it implies a short period of

no cointegration between 2002 and 2004. For the other countries, the ’backward’-break

might be too small to be detected or there is a smooth transition. Therefore, it is not
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clear for Spain, Portugal, Ireland and Greece at which point exactly the relationship with

Germany dissolves. The test results in Table 7 suggest a short period of cointegration

because the rolling test rejects with λ0 = 0.2 but not with λ0 = 0.5 for these countries.

Table 9: Break dates with δ = 0.05 before the first break in Table 8.

ES IT PT IE GR

04.03.2002 16.10.2002 10.12.2001 30.09.2008 30.10.2008

BE AT FI NL FR

— 05.01.2001 08.05.2000∗ 11.02.2000∗ 13.12.2007

Strictly speaking, the direction of the estimated break dates for Finland and the

Netherland in 2000 and 2002 imply no cointegration for most of the sample. This

contradicts the findings of the tests in Table 7 that state rather strong evidence of

cointegration, in particular for the Dutch yield. Therefore, we conclude that they are

permanently cointegrated.

Considering the sample from the first break date until 2017, we estimate the break

dates in Table 10. Those are ’backward’-breaks implying the emergence of a fractional

cointegrating relation. They are located in 2012 and 2013 for most of the countries.

For Austria, there is another ’forward’-break in 2008, but after that we also find a

’backward’-break on 05.09.2012.

Table 10: Break dates with δ = 0.05 after the first break in Table 8.

ES IT PT IE GR

24.05.2013∗ 02.05.2013∗ 12.12.2012∗ 11.12.2014∗ 12.10.2012∗

BE AT FI NL FR

11.12.2012∗ 30.10.2008 — — 05.09.2012∗

In Table B.1 in the appendix, all found break dates from sequential estimation are

collected, and in all subsamples the data still exhibits unit roots. The table contains

further break dates for some countries in 2000 and in 2016 that imply no cointegration at

the edges of the sample. However, the dates are very close to the edges, and the Monte

Carlo simulation showed estimates very close to the margins in the case of permanent

cointegration. Therefore, the validity of the breaks in the small subsamples close to

the edges is doubtful and we rather suspect continuous cointegration in the border-

subsamples.

All in all, based on the co-movements in Figure 1 and the rejections in Table 7,

we conclude that the yields of the countries were fractionally cointegrated with that of

Germany after the introduction of the euro until the European debt crisis. The break

point estimates point to the dissolution of fractional cointegrating relationships and
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market integration at the beginning of the European debt crisis in 2010 although the

breaks might have occurred earlier for Spain, Italy, Portugal and Ireland. In 2012/2013

the cointegrating relationships are reestablished. For Finland and the Netherlands the

results indicate permanent cointegration.

6 Conclusion

In this paper, we present tests for the null of no fractional cointegration against the

alternative of segmented fractional cointegration. To do this we develop new tests based

on the procedure of Hassler and Breitung (2006) combined with ideas from Davidson

and Monticini (2010). We introduce split sample, forward- and backward-running in-

cremental sample and rolling sample tests for segmented cointegration. We show that

the limit distribution of all of these statistics converge to the supremum of a chi-squared

distribution. Furthermore, a break point estimator based on minimizing the sum of

squared residuals is also proposed.

An in-depth Monte Carlo analysis shows the satisfying size and power properties of

our tests in various situations. However, it turns out that the split sample test performs

best in terms of power when the break occurs from the spurious to the fractionally

cointegrated regime wherever the breakpoint is. On the other hand, if the break is from

the fractionally cointegrated regime to the spurious regime, the rolling window test

has the best power properties for all possible breakpoints. Therefore, we recommend

application of both the split sample and the rolling window tests.

As segmented fractional cointegration is a very likely empirical situation we in-

vestigate daily EMU government bonds between January 1999 and August 2017. We

find constant fractional cointegration for the Dutch and Finish government bond yields

with Germany. For the other countries, namely Spain, Italy, Portugal, Greece, Ireland,

Belgium, and France we find segmented fractional cointegration with a period of no

fractional cointegration during the European debt or financial crisis.
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A Technical Appendix

Before we prove the Theorems define

e
′
(λ1,λ2) := (e⌊λ1T ⌋+2, . . . ,e⌊λ2T ⌋)

and

e∗
′
(λ1,λ2) := (e∗⌊λ1T ⌋+1, . . . ,e

∗
⌊λ2T ⌋).

Proof of Theorem 1:

From Lemma A in Hassler and Breitung (2006) we have directly:

1
⌊λ2T ⌋− ⌊λ1T ⌋

e
′
(λ1,λ2)e(λ1,λ2)

P→ σ2 (A.1)

1

(⌊λ2T ⌋− ⌊λ1T ⌋)1/2
e
′
(λ1,λ2)e∗(λ1,λ2) ⇒ N

(

0;σ4π
2

6

)

1
⌊λ2T ⌋− ⌊λ1T ⌋e

∗′(λ1,λ2)e∗(λ1,λ2)
P→ σ2π

2

6
.

The rest of the proof follows exactly the lines of the proof of proposition 3 in Hassler

and Breitung (2006) with the only difference that we localize their arguments to the

interval t = ⌊λ1T ⌋+1, . . . , ⌊λ2T ⌋. For ease of readability we recall their arguments here.

Defining êt(λ1,λ2) = et(λ1,λ2) − e
′
(λ1,λ2)V2(λ1,λ2)(V

′
2(λ1,λ2)V2(λ1,λ2))−1v2,t(λ1,λ2) and

ê∗t−1(λ1,λ2) = e∗t−1(λ1,λ2)− e
′
(λ1,λ2)V2(λ1,λ2)(V

′
2(λ1,λ2)V2(λ1,λ2))−1v∗2,t−1(λ1,λ2) we have

ê′(λ1,λ2)ê(λ1,λ2) = e′(λ1,λ2)e(λ1,λ2)− r′T V′2(λ1,λ2)e(λ1,λ2),

ê∗′(λ1,λ2)ê∗(λ1,λ2) = e∗′(λ1,λ2)e∗(λ1,λ2)−2r′T V∗′2 (λ1,λ2)e∗(λ1,λ2)

+r′T V∗′2 (λ1,λ2)V∗2(λ1,λ2)rT ,

ê∗′(λ1,λ2)ê(λ1,λ2) = e∗′(λ1,λ2)e(λ1,λ2)− r′T V∗′2 (λ1,λ2)e(λ1,λ2)

−r′T V′2(λ1,λ2)e∗(λ1,λ2)+ r′T V∗′2 (λ1,λ2)V2(λ1,λ2)rT ,

with rT = (V′2(λ1,λ2)V2(λ1,λ2))−1V′2(λ1,λ2)e(λ1,λ2), V2 =
(

V′2,2, ...,V
′
2,T

)

. By Assumption

2 and the iid assumption for vt it holds

V′2(λ1,λ2)e(λ1,λ2) = OP(T 1/2),

rT = OP(T−1/2),

V∗′2 e∗ = OP(T ),
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and

1
⌊λ2T ⌋− ⌊λ1T ⌋V

∗′
2 (λ1,λ2)e(λ1,λ2) → 0,

1
⌊λ2T ⌋− ⌊λ1T ⌋V

′
2(λ1,λ2)e∗(λ1,λ2) → 0.

From (A.1) we now have:

1
⌊λ2T ⌋− ⌊λ1T ⌋ ê

′(λ1,λ2)ê(λ1,λ2)

=
1

⌊λ2T ⌋− ⌊λ1T ⌋e
′(λ1,λ2)e(λ1,λ2)+oP(1)

P→ σ2

1

(⌊λ2T ⌋− ⌊λ1T ⌋)1/2
ê′(λ1,λ2)ê∗(λ1,λ2)

=
1

(⌊λ2T ⌋− ⌊λ1T ⌋)1/2
e′(λ1,λ2)e∗(λ1,λ2)+oP(1)⇒ N

(

0;σ4π
2

6

)

1
⌊λ2T ⌋− ⌊λ1T ⌋

ê∗′(λ1,λ2)ê∗(λ1,λ2)

=
1

⌊λ2T ⌋− ⌊λ1T ⌋e
∗′(λ1,λ2)e∗(λ1,λ2)+oP(1)

P→ σ2π
2

6

which proves the theorem. �

Proof of Theorem 2:

The proof follows directly from the results in Theorem 1 and the arguments in Davidson

and Monticini (2010). �

Proof of Theorem 3:

Assume that the break is from cointegration to non-cointegration. This is before the

break the residuals are of integration order d−b whereas they are of order d after the

break. Denote by d̂ the estimated integration order based on the whole sample. Then

we have d−b ≤ d̂ ≤ d.

We thus have

⌊τT ⌋−2d̂
⌊τT ⌋
∑

t=1

ê2
t (τ) = OP(T (d−b)−d̂)1[τ≤τ0] +∞1[τ>τ0]

which proves the theorem. �
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Table B.1: All break dates in pairwise cointegrating regressions with the German yield. Bold dates indicate ’forward’-breaks and italic dates

indicate ’backward’-breaks.

ES IT PT IE GR BE AT FI NL FR

1999

2000 23.03.2000 31.01.2000 09.05.2000 03.02.2000 25.01.2000 08.05.2000 11.02.2000

2001 10.04.2001 10.12.2001 14.12.2001 19.04.2001

2002 04.03.2002 16.10.2002 06.12.2002 21.10.2002

2003 04.07.2003

2004 30.04.2004

2005

2006

2007 13.12.2007

2008 05.09.2008 05.09.2008 15.09.2008 30.09.2008 30.10.2008 21.11.2008 30.10.2008 21.11.2008

2009

2010 05.05.2010 24.05.2010 27.04.2010 28.04.2010 22.04.2010

2011

2012 12.12.2012 02.08.2012 12.10.2012 11.12.2012 05.09.2012 05.09.2012

2013 24.05.2013 02.05.2013

2014 15.08.2014 29.12.2014

2015 24.06.2015

2016 29.01.2016 02.02.2016 29.01.2016 08.02.2016 08.02.2016 06.01.2016

2017

-
26

-
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