Teaching at the Institute of Statistics

In our undergraduate courses you will learn statistical methods which enables you to independently analyze economic data in many practical situations.

 

In the graduate courses we also present more advanced statistical concepts which allow you to develop suitable solutions in complex data situations.

In our undergraduate courses you will learn statistical methods which enables you to independently analyze economic data in many practical situations.

 

In the graduate courses we also present more advanced statistical concepts which allow you to develop suitable solutions in complex data situations.

Our Courses this Semester

  • Winter term 2023/2024

    Bachelor Wirtschaftswissenschaft

    Kompetenzbereich Statistik

    • Tutorium zu Schließende Statistik (270031)

      Termine:Lehrpersonen:
      Mo. 12:45 - 14:15 | I-342 (Gruppe 1)Tutor
      Mo. 12:45 - 14:15 | I-442 (Gruppe 2)Tutor
      Mo. 12:45 - 14:15 | I-332 (Gruppe 3)Tutor
      Mo. 14:30 - 16:00 | I-442 (Gruppe 4)Tutor
      Mo. 14:30 - 16:00 | I-332 (Gruppe 5)Tutor
      Mo. 14:30 - 16:00 | I-063 (Gruppe 6)Tutor
      Di. 09:15 - 10:45 | II-013 (Gruppe 7)Tutor
      Di. 14:30 - 16:00 | I-442 (Gruppe 8)Tutor
      Di. 16:15 - 17:45 | I-063 (Gruppe 9)Tutor
      Mi. 11:00 - 12:30 | VII-004 (Gruppe 10)Tutor
      Mi. 11:00 - 12:30 | I-063 (Gruppe 11)Tutor
      Mi. 14:30 - 16:00 | I-342 (Gruppe 12)Tutor
      Mi. 14:30 - 16:00 | I-332 (Gruppe 13)Tutor
      Do. 09:15 - 10:45 | VII-005 (Gruppe 14)Tutor
      Do. 09:15 - 10:45 | I-442 (Gruppe 15)Tutor
      Do. 09:15 - 10:45 | I-332 (Gruppe 16)Tutor
      Do. 11:00 - 12:30 | I-342 (Gruppe 17)Tutor
      Do. 11:00 - 12:30 | VII-005 (Gruppe 18)Tutor
      Do. 14:30 - 16:00 | I-063 (Gruppe 19)Tutor
      Do. 16:15 - 17:45 | I-063 (Gruppe 20)Tutor
      Fr. 11:00 - 12:30 | I-342 (Gruppe 21)Tutor
      Fr. 11:00 - 12:30 | I-332 (Gruppe 22)Tutor
      Fr. 11:00 - 12:30 | I-063 (Gruppe 23)Tutor
      Fr. 14:30 - 16:00 | I-332 (Gruppe 24)Tutor
      Bemerkungen:

      Bereitschaft zur aktiven Mitarbeit in den eingeteilten Tutoriumsgruppen wird erwartet.

      Die Gruppeneinteilung findet über Stud.IP am Mi. 19.04.2023 ab 11:30 Uhr statt.

      Die Gruppen 1, 8, 21 und 23 müssen leider entfallen.

    • Schließende Statistik (270158)

      Termine:Lehrpersonen:
      Mi. 09:15 - 10:45 | VII-002 (Gruppe 1)Sibbertsen
      Mo. 09:15 - 10:45 | VII-201 (Gruppe 2)Lehne
      Inhalt:
      • Normalverteilung
      • Binomialverteilung
      • Stichproben
      • Punktschätzung
      • Intervallschätzung
      • Statistische Tests
      • Regressionsanalyse
      Literatur:
      • Sibbertsen, P./Lehne, H. (2014) Statistik, 2. Auflage, Berlin.
      • Fahrmeir, L. et al. (2004) Statistik, 5. Auflage Berlin.
      • Schlittgen, R. (2003) Einführung in die Statistik, 10. Auflage München.
    • Übung zu Schließende Statistik (270159)

      Termine:Lehrpersonen:
      Mi. 07:30 - 09:00 | VII-002 (Gruppe 1)Sibbertsen
      Fr. 09:15 - 10:45 | VII-201 (Gruppe 2)Lehne

    Kompetenzbereiche Betriebs- und Volkswirtschaftslehre

    • Seminar Ökonometrie (273002)

      Termine:Lehrpersonen:
      Blockveranstaltung (Gruppe 1)Sibbertsen
      Blockveranstaltung (Gruppe 2)Flock, Toumping Fotso
      Inhalt:

      Thema des Seminars im Sommersemester 2023 ist "Regressionsanalyse"

      Bemerkungen:

      Das Seminar wird als Blockveranstaltung durchgeführt. Nähere Angaben zur Themenvergabe und zum Zeitpunkt der Veranstaltung werden auf der Internetseite des Instituts für Statistik bekannt gegeben.

      Prüfer: Prof. Dr. Sibbertsen

    Master Wirtschaftswissenschaft

    Kompetenzbereich (Area) Empirical Economics and Econometrics

    • Statistical Programming (373005)

      Termine:Lehrpersonen:
      Do. 12:45 - 14:15 | II-214Flock
      Inhalt:
      • Data Structures
      • Functions and Loops
      • Handling Data
      • Graphics
      • Linear Regression
      • Numerical Optimization
      • Monte Carlo Methods
      Literatur:
      • Ligges (2007) Programmieren mit R, Berlin, Springer.
      • Braun / Murdock (2007) A first course in statistical programming with R, Cambridge University Press.
      • Rizzo (2008) Statistical Computing with R, Chapman & Hall.
    • Nonparametric Statistical Methods (373010)

      Termine:Lehrpersonen:
      Mo. 09:15 - 10:45 | I-063Less
      Inhalt:
      • Kernel density estimation
      • Nonparametric regression
      • Semiparametric methods
      • Machine learning
      Literatur:
      • Härdle, W. (1992) Applied Nonparametric Regression, Cambridge University Press.
      • Henderson, D. J., Parmeter, C. F. (2015) Applied Nonparametric Econometrics, Cambridge University Press.
      • Li, Q., Racine, J. S. (2007) Nonparametric Econometrics, Princeton University Press.
      • Pagan, A., Ullah A. (1999): Nonparametric Econometrics, Cambridge University Press.
      • Friedman, J., Hastie, T., Tibshirani, R., (2001): The Elements of Statistical Learning, Springer.
    • Multivariate Statistics (373011)

      Termine:Lehrpersonen:
      Di. 09:15 - 10:45 | I-063Fitter
      Inhalt:
      • Short overview of Matrix and Vector Algebra
      • Multivariate descriptive statistics
      • Multivariate normaldistribution
      • Multivariate analysis of variance
      • Introduction to data analysis
      • Discriminant Analysis and Classification
      • Cluster Analysis
      • Principal Components Analysis and Factor Analysis.
      Literatur:
      • Izenman, A. J. (2008). Modern multivariate statistical techniques. Regression, classification and manifold learning.
      • Johnson R. A. and Wichern D. W., (2007), Applied Multivariate Statistical Analysis. 6th edition. New Jersey: Pearson.
      • Krzanowski, W. (2000). Principles of multivariate analysis (Vol. 23). OUP Oxford.
      • Rencher, A. C. and Christensen W. F. (2012). Methods of multivariate analysis.3rd edition. John Wiley & Sons.
    • Computerintensive Statistics (373015)

      Termine:Lehrpersonen:
      Fr. 07:30 - 09:00 | I-063Toumping Fotso
      Inhalt:
      • Metropolis Algorithm
      • Adaptive Metropolis Algorithm
      • Delayed Rejection Adaptive Metropolis
      • Metropolis-Hastings Algorithm
      • Gibbs Sampling
      Literatur:

      Albert, Jim (2007): Bayesian Computation with R, Springer

    • Machine Learning (373024)

      Termine:Lehrpersonen:
      Do. 09:15 - 10:45 | I-342Meier
      Inhalt:

      The term machine learning summarises a wide range of statistical methods used for pattern recognition, classification and prediction. Applications encompass the recognition of text, speech and images, spam and fraud detection, recommendation systems for customers, as well as generating information from large quantities of data or predicting stock prices.

      This lecture covers a selection of common supervised to unsupervised learning algorithms. These refer to clustering and regression problems, and clustering and dimensionality reduction methods respectively. Examples of covered statistical methods include:

      • Linear and logistic regression
      • K-nearest neighbours
      • Naïve Bayes
      • Model selection and cross validation
      • Tree-based methods
      • Support vector machines
      • Principal component analysis
      • Neural networks

      The lecture includes applications in Python. Previous experience with Python or R is helpful, but not required.

      Literatur:
      • Friedman, J., Hastie, T., & Tibshirani, R. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Vol. 2). Springer, Berlin: Springer Series in Statistics.
      • James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning with Applications in R (Vol. 112). New York: Springer.
      • Bishop, C. (2006): Pattern Recognition and Machine Learning, Springer, New York: Information Science and Statistics
      • Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press.
      • Wasserman, L. (2013). All of Statistics: A Concise Course in Statistical Inference. Springer Science & Business Media.

    Mehrere Kompetenzbereiche (Areas)

    • Time Series Analysis (379016)

      Termine:Lehrpersonen:
      Di. 07:30 - 09:00 | I-342Sibbertsen
      Inhalt:
      • Stationarity
      • Autoregressive und Moving Average Models
      • Non-Stationarity
      • Forecasting
      • Spectral Analysis
      • Long Memory Time Series.
      Literatur:
      • Hamilton, J. D. (1994): Time Series Analysis, Princeton.
      • Schlittgen, R., Stritberg, H. J. (2003): Zeitreihenanalyse, Oldenbourg.
    • Ringvorlesung Financial Markets and the Global Challenges (379059)

      Termine:Lehrpersonen:
      Di. 16:15 - 17:45 | I-342Blaufus, Dräger, Gassebner, Gnutzmann-Mkrtchyan, Prokopczuk, Schneider, Schöndube, Schröder, Sibbertsen, Todtenhaupt
      Inhalt:

      Financial markets are the backbone of the economy. The world is facing many challenges such as climate change, crime and international conflicts, ageing societies or economic disruptions. In this lecture series, faculty members of the School of Economics and Management will discuss how financial markets are related and/or might provide means to tackle these challenges. After attending the lecture series, students can pick one specific topic and write a term paper (Hausarbeit) supervised by the corresponding faculty member.

    Promotionsstudium

    3. Bereich: Wissenschaftliche Kompetenzen

    • Doktorandenseminar Statistik (574004)

      Termine:Lehrpersonen:
      BlockveranstaltungSibbertsen
      Inhalt:

      The students present and discuss their own latest research results.

      Literatur:

      Given in the seminar

    Forschungsveranstaltungen

    • Research Seminar Financial Markets and the Global Challenges (77782)

      Termine:Lehrpersonen:
      Mi. 11:00 - 12:30 | I-442Blaufus, Dierkes, Dräger, Gassebner, Gnutzmann-Mkrtchyan, Prokopczuk, Schneider, Schöndube, Schröder, Sibbertsen, Todtenhaupt
      Inhalt:

      External guests present their latest research

    • Kolloquium Innovation und Lernen (77787)

      Termine:Lehrpersonen:
      BlockveranstaltungBlaufus, Dierkes, Dräger, Foege, Gassebner, Gnutzmann-Mkrtchyan, Grote, Haunschild, Piening, Prokopczuk, Schneider, Schöndube, Schröder, Sibbertsen, Walsh, Weber, Wielenberg
      Inhalt:

      Im Kolloquium werden Forschungsprojekte im Rahmen des Forschungsschwerpunkts "Innovation und Lernen" vorgestellt.

All courses of the institute

Further Information and Notes on University Studies